Suppr超能文献

合成控制方法的预测区间

Prediction Intervals for Synthetic Control Methods.

作者信息

Cattaneo Matias D, Feng Yingjie, Titiunik Rocio

机构信息

Department of Operations Research and Financial Engineering, Princeton University.

School of Economics and Management, Tsinghua University.

出版信息

J Am Stat Assoc. 2021;116(536):1865-1880. doi: 10.1080/01621459.2021.1979561. Epub 2021 Dec 2.

Abstract

Uncertainty quantification is a fundamental problem in the analysis and interpretation of synthetic control (SC) methods. We develop conditional prediction intervals in the SC framework, and provide conditions under which these intervals offer finite-sample probability guarantees. Our method allows for covariate adjustment and non-stationary data. The construction begins by noting that the statistical uncertainty of the SC prediction is governed by two distinct sources of randomness: one coming from the construction of the (likely misspecified) SC weights in the pre-treatment period, and the other coming from the unobservable stochastic error in the post-treatment period when the treatment effect is analyzed. Accordingly, our proposed prediction intervals are constructed taking into account both sources of randomness. For implementation, we propose a simulation-based approach along with finite-sample-based probability bound arguments, naturally leading to principled sensitivity analysis methods. We illustrate the numerical performance of our methods using empirical applications and a small simulation study. Python, R and Stata software packages implementing our methodology are available.

摘要

不确定性量化是合成控制(SC)方法分析与解释中的一个基本问题。我们在SC框架中开发了条件预测区间,并给出了这些区间提供有限样本概率保证的条件。我们的方法允许进行协变量调整和处理非平稳数据。构建过程始于注意到SC预测的统计不确定性由两个不同的随机源决定:一个来自预处理期(可能设定错误的)SC权重的构建,另一个来自分析处理效应时处理期不可观测的随机误差。因此,我们提出的预测区间在构建时考虑了这两个随机源。为了实现,我们提出了一种基于模拟的方法以及基于有限样本的概率界论证,自然地引出了有原则的敏感性分析方法。我们通过实证应用和一个小型模拟研究来说明我们方法的数值性能。实现我们方法的Python、R和Stata软件包均可获取。

相似文献

1
Prediction Intervals for Synthetic Control Methods.合成控制方法的预测区间
J Am Stat Assoc. 2021;116(536):1865-1880. doi: 10.1080/01621459.2021.1979561. Epub 2021 Dec 2.
2
Prediction sets adaptive to unknown covariate shift.适应未知协变量转移的预测集
J R Stat Soc Series B Stat Methodol. 2023 Jul 17;85(5):1680-1705. doi: 10.1093/jrsssb/qkad069. eCollection 2023 Nov.
4
Extremely randomized neural networks for constructing prediction intervals.极端随机化神经网络构建预测区间。
Neural Netw. 2021 Dec;144:113-128. doi: 10.1016/j.neunet.2021.08.020. Epub 2021 Aug 19.
5
Dependence calibration in conditional copulas: a nonparametric approach.条件 copula 中的相依性校准:一种非参数方法。
Biometrics. 2011 Jun;67(2):445-53. doi: 10.1111/j.1541-0420.2010.01472.x. Epub 2010 Aug 23.
8
Individual prediction regions for multivariate longitudinal data with small samples.
Biometrics. 2014 Sep;70(3):629-38. doi: 10.1111/biom.12201. Epub 2014 Jun 19.
10
Variance estimation in inverse probability weighted Cox models.逆概率加权Cox模型中的方差估计
Biometrics. 2021 Sep;77(3):1101-1117. doi: 10.1111/biom.13332. Epub 2020 Aug 3.

引用本文的文献

1
Estimating the collapse of Afghanistan's economy using nightlights data.利用夜光数据估算阿富汗经济的崩溃情况。
PLoS One. 2024 Dec 13;19(12):e0315337. doi: 10.1371/journal.pone.0315337. eCollection 2024.
2
Doubly robust proximal synthetic controls.双重稳健的近端合成控制法。
Biometrics. 2024 Mar 27;80(2). doi: 10.1093/biomtc/ujae055.
4
Regression discontinuity threshold optimization.回归间断点阈值优化。
PLoS One. 2022 Nov 16;17(11):e0276755. doi: 10.1371/journal.pone.0276755. eCollection 2022.
7
Distributional conformal prediction.分布型适应预测。
Proc Natl Acad Sci U S A. 2021 Nov 30;118(48). doi: 10.1073/pnas.2107794118.

本文引用的文献

2
Distributional conformal prediction.分布型适应预测。
Proc Natl Acad Sci U S A. 2021 Nov 30;118(48). doi: 10.1073/pnas.2107794118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验