Utschig Lisa M, Brahmachari Udita, Mulfort Karen L, Niklas Jens, Poluektov Oleg G
Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
Chem Sci. 2022 May 11;13(22):6502-6511. doi: 10.1039/d2sc01546c. eCollection 2022 Jun 7.
Flavin chemistry is ubiquitous in biological systems with flavoproteins engaged in important redox reactions. In photosynthesis, flavin cofactors are used as electron donors/acceptors to facilitate charge transfer and accumulation for ultimate use in carbon fixation. Following light-induced charge separation in the photosynthetic transmembrane reaction center photosystem I (PSI), an electron is transferred to one of two small soluble shuttle proteins, a ferredoxin (Fd) or a flavodoxin (Fld) (the latter in the condition of Fe-deficiency), followed by electron transfer to the ferredoxin-NADP reductase (FNR) enzyme. FNR accepts two of these sequential one electron transfers, with its flavin adenine dinucleotide (FAD) cofactor becoming doubly reduced, forming a hydride which is then passed onto the substrate NADP to form NADPH. The two one-electron potentials (oxidized/semiquinone and semiquinone/hydroquinone) are similar to each other with the FNR protein stabilizing the hydroquinone, making spectroscopic detection of the intermediate semiquinone state difficult. We employed a new biohybrid-based strategy that involved truncating the native three-protein electron transfer cascade PSI → Fd → FNR to a two-protein cascade by replacing PSI with a molecular Ru(ii) photosensitizer (RuPS) which is covalently bound to Fd and Fld to form biohybrid complexes that successfully mimic PSI in light-driven NADPH formation. RuFd → FNR and RuFld → FNR electron transfer experiments revealed a notable distinction in photosynthetic charge accumulation that we attribute to the different protein cofactors [2Fe2S] and flavin. After freeze quenching the two-protein systems under illumination, an intermediate semiquinone state of FNR was readily observed with cw X-band EPR spectroscopy. The increased spectral resolution from selective deuteration allowed EPR detection of inter-flavoprotein electron transfer. This work establishes a biohybrid experimental approach for further studies of photosynthetic light-driven electron transfer chain that culminates at FNR and highlights nature's mechanisms that couple single electron transfer chemistry to charge accumulation, providing important insight for the development of photon-to-fuel schemes.
黄素化学在生物系统中无处不在,黄素蛋白参与重要的氧化还原反应。在光合作用中,黄素辅因子用作电子供体/受体,以促进电荷转移和积累,最终用于碳固定。在光合跨膜反应中心光系统I(PSI)中光诱导的电荷分离后,一个电子转移到两种小的可溶性穿梭蛋白之一,即铁氧化还原蛋白(Fd)或黄素氧化还原蛋白(Fld)(后者在缺铁条件下),随后电子转移到铁氧化还原蛋白-NADP还原酶(FNR)酶。FNR接受这两个连续的单电子转移,其黄素腺嘌呤二核苷酸(FAD)辅因子被双重还原,形成一个氢化物,然后传递到底物NADP上形成NADPH。FNR蛋白稳定对苯二酚,使得中间半醌态的光谱检测变得困难,两个单电子电位(氧化态/半醌态和半醌态/对苯二酚态)彼此相似。我们采用了一种基于新型生物杂交的策略,该策略涉及将天然的三蛋白电子传递级联PSI→Fd→FNR通过用分子Ru(ii)光敏剂(RuPS)取代PSI截断为两蛋白级联,RuPS与Fd和Fld共价结合形成生物杂交复合物,成功地模拟了光驱动NADPH形成中的PSI。RuFd→FNR和RuFld→FNR电子转移实验揭示了光合电荷积累的显著差异,我们将其归因于不同的蛋白质辅因子[2Fe2S]和黄素。在光照下对两蛋白系统进行冷冻猝灭后,用连续波X波段EPR光谱很容易观察到FNR的中间半醌态。选择性氘代提高的光谱分辨率使得EPR能够检测黄素蛋白间的电子转移。这项工作建立了一种生物杂交实验方法,用于进一步研究在FNR处达到顶峰的光合光驱动电子传递链,并突出了将单电子转移化学与电荷积累耦合的自然机制,为光子到燃料方案的开发提供了重要的见解。