Suppr超能文献

通过铁氧化还原蛋白 - 烟酰胺腺嘌呤二核苷酸磷酸还原酶中黄素半醌的形成检测到的生物杂交光合电荷积累。

Biohybrid photosynthetic charge accumulation detected by flavin semiquinone formation in ferredoxin-NADP reductase.

作者信息

Utschig Lisa M, Brahmachari Udita, Mulfort Karen L, Niklas Jens, Poluektov Oleg G

机构信息

Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA

出版信息

Chem Sci. 2022 May 11;13(22):6502-6511. doi: 10.1039/d2sc01546c. eCollection 2022 Jun 7.

Abstract

Flavin chemistry is ubiquitous in biological systems with flavoproteins engaged in important redox reactions. In photosynthesis, flavin cofactors are used as electron donors/acceptors to facilitate charge transfer and accumulation for ultimate use in carbon fixation. Following light-induced charge separation in the photosynthetic transmembrane reaction center photosystem I (PSI), an electron is transferred to one of two small soluble shuttle proteins, a ferredoxin (Fd) or a flavodoxin (Fld) (the latter in the condition of Fe-deficiency), followed by electron transfer to the ferredoxin-NADP reductase (FNR) enzyme. FNR accepts two of these sequential one electron transfers, with its flavin adenine dinucleotide (FAD) cofactor becoming doubly reduced, forming a hydride which is then passed onto the substrate NADP to form NADPH. The two one-electron potentials (oxidized/semiquinone and semiquinone/hydroquinone) are similar to each other with the FNR protein stabilizing the hydroquinone, making spectroscopic detection of the intermediate semiquinone state difficult. We employed a new biohybrid-based strategy that involved truncating the native three-protein electron transfer cascade PSI → Fd → FNR to a two-protein cascade by replacing PSI with a molecular Ru(ii) photosensitizer (RuPS) which is covalently bound to Fd and Fld to form biohybrid complexes that successfully mimic PSI in light-driven NADPH formation. RuFd → FNR and RuFld → FNR electron transfer experiments revealed a notable distinction in photosynthetic charge accumulation that we attribute to the different protein cofactors [2Fe2S] and flavin. After freeze quenching the two-protein systems under illumination, an intermediate semiquinone state of FNR was readily observed with cw X-band EPR spectroscopy. The increased spectral resolution from selective deuteration allowed EPR detection of inter-flavoprotein electron transfer. This work establishes a biohybrid experimental approach for further studies of photosynthetic light-driven electron transfer chain that culminates at FNR and highlights nature's mechanisms that couple single electron transfer chemistry to charge accumulation, providing important insight for the development of photon-to-fuel schemes.

摘要

黄素化学在生物系统中无处不在,黄素蛋白参与重要的氧化还原反应。在光合作用中,黄素辅因子用作电子供体/受体,以促进电荷转移和积累,最终用于碳固定。在光合跨膜反应中心光系统I(PSI)中光诱导的电荷分离后,一个电子转移到两种小的可溶性穿梭蛋白之一,即铁氧化还原蛋白(Fd)或黄素氧化还原蛋白(Fld)(后者在缺铁条件下),随后电子转移到铁氧化还原蛋白-NADP还原酶(FNR)酶。FNR接受这两个连续的单电子转移,其黄素腺嘌呤二核苷酸(FAD)辅因子被双重还原,形成一个氢化物,然后传递到底物NADP上形成NADPH。FNR蛋白稳定对苯二酚,使得中间半醌态的光谱检测变得困难,两个单电子电位(氧化态/半醌态和半醌态/对苯二酚态)彼此相似。我们采用了一种基于新型生物杂交的策略,该策略涉及将天然的三蛋白电子传递级联PSI→Fd→FNR通过用分子Ru(ii)光敏剂(RuPS)取代PSI截断为两蛋白级联,RuPS与Fd和Fld共价结合形成生物杂交复合物,成功地模拟了光驱动NADPH形成中的PSI。RuFd→FNR和RuFld→FNR电子转移实验揭示了光合电荷积累的显著差异,我们将其归因于不同的蛋白质辅因子[2Fe2S]和黄素。在光照下对两蛋白系统进行冷冻猝灭后,用连续波X波段EPR光谱很容易观察到FNR的中间半醌态。选择性氘代提高的光谱分辨率使得EPR能够检测黄素蛋白间的电子转移。这项工作建立了一种生物杂交实验方法,用于进一步研究在FNR处达到顶峰的光合光驱动电子传递链,并突出了将单电子转移化学与电荷积累耦合的自然机制,为光子到燃料方案的开发提供了重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3421/9172293/04c68864dd83/d2sc01546c-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验