Suppr超能文献

细菌微区室的电化学辅因子循环利用

Electrochemical cofactor recycling of bacterial microcompartments.

作者信息

Sutter Markus, Utschig Lisa M, Niklas Jens, Paul Sathi, Kahan Darren N, Gupta Sayan, Poluektov Oleg G, Ferlez Bryan H, Tefft Nicholas M, TerAvest Michaela A, Hickey David P, Vermaas Josh V, Ralston Corie Y, Kerfeld Cheryl A

机构信息

MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA.

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA.

出版信息

bioRxiv. 2024 Jul 15:2024.07.15.603600. doi: 10.1101/2024.07.15.603600.

Abstract

Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B) reductase and, curiously, found it in many unrelated BMC types that do not employ B cofactors. We propose NAD+ regeneration as a new function of this enzyme and name it MNdh, for Metabolosome NADH dehydrogenase. Its partner shell protein BMC-T assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, EPR spectroscopy, protein voltammetry and structural modeling verified with X-ray footprinting. This discovery represents a new paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.

摘要

细菌微区室(BMCs)是原核细胞器,由蛋白质外壳组成,该外壳将代谢反应隔离在其内部。虽然大多数底物和产物相对较小,可以穿透外壳,但许多被包裹的酶需要辅因子,而这些辅因子必须在内部再生。我们分析了一种先前被指定为钴胺素(维生素B)还原酶的酶的存在情况,奇怪的是,我们在许多不使用B族辅因子的无关BMC类型中都发现了它。我们提出NAD⁺再生是这种酶的一项新功能,并将其命名为MNdh,即代谢体NADH脱氢酶。其伙伴外壳蛋白BMC-T有助于将产生的电子传递到外部。我们通过生物信息学分析、功能测定、电子顺磁共振光谱、蛋白质伏安法和经X射线足迹验证的结构建模来支持这一假设。这一发现代表了BMC领域的一个新范例,确定了一种新的、广泛存在的辅因子循环途径以及外壳作为分隔氧化还原环境的新功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa7/11275729/2881b7652654/nihpp-2024.07.15.603600v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验