Suppr超能文献

采用冰冻象鼻技术行全主动脉弓置换术的急性A型主动脉夹层患者术后30天死亡率的预测列线图

Prediction Nomogram for Postoperative 30-Day Mortality in Acute Type A Aortic Dissection Patients Receiving Total Aortic Arch Replacement With Frozen Elephant Trunk Technique.

作者信息

Lin Hongyuan, Chang Yi, Guo Hongwei, Qian Xiangyang, Sun Xiaogang, Yu Cuntao

机构信息

Cardiac Surgery Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Cardiovasc Med. 2022 Jun 10;9:905908. doi: 10.3389/fcvm.2022.905908. eCollection 2022.

Abstract

OBJECTIVE

To develop and validate a nomogram model to predict postoperative 30-day mortality in acute type A aortic dissection patients receiving total aortic arch replacement with frozen elephant trunk technique.

METHOD

Clinical data on 1,156 consecutive acute type A aortic dissection patients who got total aortic arch replacement using the frozen elephant trunk technique was collected from January 2010 to December 2020. These patients were divided into training and testing cohorts at random with a ratio of 7:3. To predict postoperative 30-day mortality, a nomogram was established in the training set using the logistic regression model. The novel nomogram was then validated in the testing set. The nomogram's calibration and discrimination were evaluated. In addition, we created four machine learning prediction models in the training set. In terms of calibration and discrimination, the nomogram was compared to these machine learning models in testing set.

RESULTS

Left ventricular end-diastolic diameter <45 mm, estimated glomerular filtration rate <50 ml/min/1.73 m, persistent abdominal pain, radiological celiac trunk malperfusion, concomitant coronary artery bypass grafting and cardiopulmonary bypass time >4 h were independent predictors of the 30-day mortality. The nomogram based on these 6 predictors manifested satisfying calibration and discrimination. In testing set, the nomogram outperformed the other 4 machine learning models.

CONCLUSION

The novel nomogram is a simple and effective tool to predict 30-day mortality rate for acute type A aortic dissection patients undergoing total aortic arch replacement with frozen elephant trunk technique.

摘要

目的

开发并验证一种列线图模型,以预测接受全主动脉弓置换联合象鼻支架植入术的急性A型主动脉夹层患者术后30天死亡率。

方法

收集2010年1月至2020年12月期间1156例连续接受全主动脉弓置换联合象鼻支架植入术的急性A型主动脉夹层患者的临床资料。这些患者被随机分为训练组和测试组,比例为7:3。为预测术后30天死亡率,在训练集中使用逻辑回归模型建立列线图。然后在测试集中对新的列线图进行验证。评估列线图的校准和区分度。此外,我们在训练集中创建了四个机器学习预测模型。在校准和区分度方面,将列线图与测试集中的这些机器学习模型进行比较。

结果

左心室舒张末期内径<45mm、估计肾小球滤过率<50ml/min/1.73m²、持续性腹痛、放射学检查显示腹腔干灌注不良、同期冠状动脉搭桥术以及体外循环时间>4小时是30天死亡率的独立预测因素。基于这6个预测因素的列线图表现出令人满意的校准和区分度。在测试集中,列线图的表现优于其他4个机器学习模型。

结论

新的列线图是一种简单有效的工具,可用于预测接受全主动脉弓置换联合象鼻支架植入术的急性A型主动脉夹层患者的30天死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c8a/9226415/e72e78a81d75/fcvm-09-905908-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验