Suppr超能文献

图像中的感知色域:从边界到差异

Perceived Color Gamut in Images: From Boundary to Difference.

作者信息

Xie Hao, Wanat Robert, Fairchild Mark D

机构信息

Program of Color Science, Munsell Color Science Laboratory, Rochester Institute of Technology, Rochester, NY, United States.

LG Electronics/Zenith R&D, San Jose, CA, United States.

出版信息

Front Neurosci. 2022 Jun 7;16:907697. doi: 10.3389/fnins.2022.907697. eCollection 2022.

Abstract

A larger display color gamut volume (CGV) is expected to produce higher perceived brightness and colorfulness of the images displayed. However, display control algorithms such as gamut mapping and color conversion need to be carefully controlled to fully take advantage of the higher luminance and more saturated display primaries. Using RGBW displays (RGB plus a white channel) as a special case in contrast to RGB displays, it is demonstrated that a larger RGB display gamut enclosed by the boundary did not guarantee a larger color gamut perceived in images. Five gamuts with different white channel contributions were simulated, and seven different image contents were curated and rendered on each display. Using a paired comparison experiment with 33 observers, the perceived scales of color gamut as perceived brightness and colorfulness were derived. The results show more correlation with the image-wise than display-wise CGV and can be explained with image color differences. Our findings highlight the importance of considering image contents when optimizing display gamut volume, which can be guided by such image-wise analysis.

摘要

更大的显示色域体积(CGV)有望使所显示图像的感知亮度和色彩更丰富。然而,诸如色域映射和颜色转换等显示控制算法需要仔细控制,以充分利用更高的亮度和饱和度更高的显示原色。与RGB显示器相比,以RGBW显示器(RGB加上一个白色通道)为例,结果表明,由边界包围的更大的RGB显示器色域并不能保证图像中感知到的色域更大。模拟了五个具有不同白色通道贡献的色域,并在每个显示器上策划和渲染了七种不同的图像内容。通过对33名观察者进行配对比较实验,得出了作为感知亮度和色彩的色域感知尺度。结果表明,与按显示器计算的CGV相比,按图像计算的CGV相关性更高,并且可以用图像颜色差异来解释。我们的研究结果突出了在优化显示色域体积时考虑图像内容的重要性,这可以通过这种按图像计算的分析来指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9288/9215114/df914f6d6de8/fnins-16-907697-g0001.jpg

相似文献

1
Perceived Color Gamut in Images: From Boundary to Difference.
Front Neurosci. 2022 Jun 7;16:907697. doi: 10.3389/fnins.2022.907697. eCollection 2022.
4
Proper application of chromaticity gamut area metrics for displays.
Opt Express. 2021 Aug 30;29(18):29107-29115. doi: 10.1364/OE.434549.
5
Accurate luminance and chromaticity controls of digital colors using CIE-based RGBW algorithms.
J Opt Soc Am A Opt Image Sci Vis. 2023 Mar 1;40(3):A178-A182. doi: 10.1364/JOSAA.479207.
6
Brightness Prediction of Large Color Gamut Laser Display Devices.
Micromachines (Basel). 2023 Sep 27;14(10):1850. doi: 10.3390/mi14101850.
7
Studies on different primaries for a nearly-ultimate gamut in a laser display.
Opt Express. 2018 Sep 3;26(18):23436-23448. doi: 10.1364/OE.26.023436.
8
A multiscale framework for spatial gamut mapping.
IEEE Trans Image Process. 2007 Oct;16(10):2423-35. doi: 10.1109/tip.2007.904946.
9
Determination of Gamut Boundary Description for multi-primary color displays.
Opt Express. 2007 Oct 1;15(20):13388-403. doi: 10.1364/oe.15.013388.
10
Color gamut mapping between small and large color gamuts: part II. gamut extension.
Opt Express. 2018 Jun 25;26(13):17335-17349. doi: 10.1364/OE.26.017335.

本文引用的文献

1
Naturalness and aesthetics of colors - Preference for color compositions perceived as natural.
Vision Res. 2021 Aug;185:98-110. doi: 10.1016/j.visres.2021.03.010. Epub 2021 May 6.
2
Vision Models for Wide Color Gamut Imaging in Cinema.
IEEE Trans Pattern Anal Mach Intell. 2021 May;43(5):1777-1790. doi: 10.1109/TPAMI.2019.2938499. Epub 2021 Apr 1.
3
Statistics of natural images as a function of dynamic range.
J Vis. 2019 Feb 1;19(2):13. doi: 10.1167/19.2.13.
4
Uniform color spaces and natural image statistics.
J Opt Soc Am A Opt Image Sci Vis. 2012 Feb 1;29(2):A182-7. doi: 10.1364/JOSAA.29.00A182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验