Suppr超能文献

使用简单渲染图像和人为色域边界进行色域映射技术的心理物理评估。

Psychophysical evaluation of gamut mapping techniques using simple rendered images and artificial gamut boundaries.

机构信息

Munsell Color Sci. Lab., Rochester Inst. of Technol., NY.

出版信息

IEEE Trans Image Process. 1997;6(7):977-89. doi: 10.1109/83.597273.

Abstract

Using a paired comparison paradigm, various gamut mapping algorithms were evaluated using simple rendered images and artificial gamut boundaries. The test images consisted of simple rendered spheres floating in front of a gray background. Using CIELAB as our device-independent color space, cut-off values for lightness and chroma, based on the statistics of the images, were chosen to reduce the gamuts for the test images. The gamut mapping algorithms consisted of combinations of clipping and mapping the original gamut in linear piecewise segments. Complete color space compression in RGB and CIELAB was also tested. Each of the colored originals (R,G,B,C,M,Y, and Skin) were mapped separately in lightness and chroma. In addition, each algorithm was implemented with saturation (C()/L()) allowed to vary or retain the same values as in the original image. Pairs of test images with reduced color gamuts were presented to twenty subjects along with the original image. For each pair the subjects chose the test image that better reproduced the original. Rank orders and interval scales of algorithm performance with confidence limits were then derived. Clipping all out-of-gamut colors was the best method for mapping chroma. For lightness mapping at low lightness levels and high lightness levels particular gamut mapping algorithms consistently produced images chosen as most like the original. The choice of device-independent color space may also influence which gamut mapping algorithms are best.

摘要

使用配对比较范式,使用简单渲染的图像和人为色域边界评估了各种色域映射算法。测试图像由简单渲染的球体浮在灰色背景前组成。使用 CIELAB 作为我们的设备无关颜色空间,基于图像的统计信息选择亮度和色度的截止值,以减少测试图像的色域。色域映射算法由在分段线性片段中裁剪和映射原始色域的组合组成。还测试了 RGB 和 CIELAB 中的完整颜色空间压缩。每个彩色原件(R、G、B、C、M、Y 和皮肤)分别在亮度和色度上进行映射。此外,每个算法都实现了饱和度(C()/ L())可以变化或保留与原始图像相同的值。将色域减小的测试图像与原始图像一起呈现给二十位受试者。对于每对测试图像,受试者选择了更好地再现原始图像的测试图像。然后得出算法性能的等级顺序和间隔尺度,并带有置信限。裁剪所有色域外的颜色是映射色度的最佳方法。对于低亮度和高亮度水平的亮度映射,特定的色域映射算法始终生成被选为最接近原始图像的图像。设备无关颜色空间的选择也可能影响最佳色域映射算法的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验