Robert M. Berne Cardiovascular Research Center (Y.-L.C., Z.D., M.K., M.O., T.M.B., E.K., S.K.S.), University of Virginia, Charlottesville.
Biomedical Engineering (S.A.S.), University of Virginia, Charlottesville.
Circulation. 2022 Aug 16;146(7):548-564. doi: 10.1161/CIRCULATIONAHA.121.058607. Epub 2022 Jun 27.
BACKGROUND: Ca signals in smooth muscle cells (SMCs) contribute to vascular resistance and control blood pressure. Increased vascular resistance in hypertension has been attributed to impaired SMC Ca signaling mechanisms. In this regard, transient receptor potential vanilloid 4 (TRPV4) ion channels are a crucial Ca entry pathway in SMCs. However, their role in blood pressure regulation has not been identified. METHODS: We used SMC-specific TRPV4 (TRPV4) mice to assess the role of TRPV4 channels in blood pressure regulation. We determined the contribution of TRPV4 channels to the constrictor effect of α1 adrenergic receptor (α1AR) stimulation and elevated intraluminal pressure: 2 main physiologic stimuli that constrict resistance-sized arteries. The contribution of spatially separated TRPV4 channel subpopulations to elevated blood pressure in hypertension was evaluated in angiotensin II-infused mice and patients with hypertension. RESULTS: We provide first evidence that TRPV4 channel activity elevates resting blood pressure in normal mice. α1AR stimulation activated TRPV4 channels through PKCα (protein kinase Cα) signaling, which contributed significantly to vasoconstriction and blood pressure elevation. Intraluminal pressure-induced TRPV4 channel activity opposed vasoconstriction through activation of Ca-sensitive K (BK) channels, indicating functionally opposite pools of TRPV4 channels. Superresolution imaging of SMCs revealed spatially separated α1AR:TRPV4 and TRPV4:BK nanodomains in SMCs. These data suggest that spatially separated α1AR-TRPV4 and intraluminal pressure-TRPV4-BK channel signaling have opposite effects on blood pressure, with α1AR-TRPV4 signaling dominating under resting conditions. Furthermore, in patients with hypertension and a mouse model of hypertension, constrictor α1AR-PKCα-TRPV4 signaling was upregulated, whereas dilator pressure-TRPV4-BK channel signaling was disrupted, thereby increasing vasoconstriction and elevating blood pressure. CONCLUSIONS: Our data identify novel smooth muscle Ca-signaling nanodomains that regulate blood pressure and demonstrate their impairment in hypertension.
背景:平滑肌细胞(SMCs)中的钙信号有助于血管阻力和血压控制。高血压中血管阻力的增加归因于 SMC 钙信号机制受损。在这方面,瞬时受体电位香草醛 4(TRPV4)离子通道是 SMC 中重要的钙内流途径。然而,它们在血压调节中的作用尚未确定。
方法:我们使用 SMC 特异性 TRPV4(TRPV4)小鼠来评估 TRPV4 通道在血压调节中的作用。我们确定 TRPV4 通道对α1 肾上腺素能受体(α1AR)刺激和升高管腔内压力的收缩作用的贡献:这是两种主要的生理刺激,可收缩阻力大小的动脉。在血管紧张素 II 输注小鼠和高血压患者中,评估了空间分离的 TRPV4 通道亚群对高血压升高血压的贡献。
结果:我们首次提供证据表明,TRPV4 通道活性可升高正常小鼠的静息血压。α1AR 刺激通过 PKCα(蛋白激酶 Cα)信号激活 TRPV4 通道,这对血管收缩和血压升高有重要贡献。管腔内压力诱导的 TRPV4 通道活性通过激活 Ca 敏感的 K(BK)通道来对抗血管收缩,表明 TRPV4 通道具有功能相反的池。SMC 的超分辨率成像揭示了 SMC 中空间分离的α1AR:TRPV4 和 TRPV4:BK 纳米域。这些数据表明,空间分离的α1AR-TRPV4 和管腔内压力-TRPV4-BK 通道信号对血压具有相反的影响,在静息状态下,α1AR-TRPV4 信号占主导地位。此外,在高血压患者和高血压小鼠模型中,收缩性α1AR-PKCα-TRPV4 信号被上调,而扩张性压力-TRPV4-BK 通道信号被破坏,从而增加血管收缩并升高血压。
结论:我们的数据确定了调节血压的新型平滑肌钙信号纳米域,并证明了它们在高血压中的受损。
Circulation. 2022-8-16
J Gen Physiol. 2014-5
Am J Physiol Renal Physiol. 2017-11-1
J Physiol. 2025-7
Biophys Rep. 2025-6-30
Front Cell Dev Biol. 2025-6-17
Biomolecules. 2025-6-18
Arterioscler Thromb Vasc Biol. 2025-5-15
Am J Physiol Cell Physiol. 2025-6-1
Proc Natl Acad Sci U S A. 2021-4-27
Compr Physiol. 2021-4-1
J Cell Sci. 2019-12-10
Arterioscler Thromb Vasc Biol. 2018-10