Suppr超能文献

缺陷硒化铜的相工程用于高性能锂硫电池

Phase Engineering of Defective Copper Selenide toward Robust Lithium-Sulfur Batteries.

作者信息

Yang Dawei, Li Mengyao, Zheng Xuejiao, Han Xu, Zhang Chaoqi, Jacas Biendicho Jordi, Llorca Jordi, Wang Jiaao, Hao Hongchang, Li Junshan, Henkelman Graeme, Arbiol Jordi, Morante Joan Ramon, Mitlin David, Chou Shulei, Cabot Andreu

机构信息

Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930 Barcelona, Spain.

Department of Electronic and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain.

出版信息

ACS Nano. 2022 Jul 26;16(7):11102-11114. doi: 10.1021/acsnano.2c03788. Epub 2022 Jun 27.

Abstract

The shuttling of soluble lithium polysulfides (LiPS) and the sluggish Li-S conversion kinetics are two main barriers toward the practical application of lithium-sulfur batteries (LSBs). Herein, we propose the addition of copper selenide nanoparticles at the cathode to trap LiPS and accelerate the Li-S reaction kinetics. Using both computational and experimental results, we demonstrate the crystal phase and concentration of copper vacancies to control the electronic structure of the copper selenide, its affinity toward LiPS chemisorption, and its electrical conductivity. The adjustment of the defect density also allows for tuning the electrochemically active sites for the catalytic conversion of polysulfide. The optimized S/CuSe cathode efficiently promotes and stabilizes the sulfur electrochemistry, thus improving significantly the LSB performance, including an outstanding cyclability over 1000 cycles at 3 C with a capacity fading rate of just 0.029% per cycle, a superb rate capability up to 5 C, and a high areal capacity of 6.07 mAh cm under high sulfur loading. Overall, the present work proposes a crystal phase and defect engineering strategy toward fast and durable sulfur electrochemistry, demonstrating great potential in developing practical LSBs.

摘要

可溶性多硫化锂(LiPS)的穿梭以及迟缓的锂硫转化动力学是锂硫电池(LSB)实际应用的两个主要障碍。在此,我们提出在阴极添加硒化铜纳米颗粒以捕获LiPS并加速锂硫反应动力学。利用计算和实验结果,我们证明了铜空位的晶相和浓度可控制硒化铜的电子结构、其对LiPS化学吸附的亲和力及其电导率。缺陷密度的调节还允许调整用于多硫化物催化转化的电化学活性位点。优化后的S/CuSe阴极有效地促进并稳定了硫电化学,从而显著提高了LSB性能,包括在3 C下超过1000次循环的出色循环稳定性,每循环容量衰减率仅为0.029%,高达5 C的卓越倍率性能,以及在高硫负载下6.07 mAh cm的高面积容量。总体而言,本工作提出了一种针对快速且持久的硫电化学的晶相和缺陷工程策略,在开发实用的LSB方面显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验