文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MLGL-MP:一种通过途径相互依赖性增强的多标签图学习框架,用于代谢途径预测。

MLGL-MP: a Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction.

机构信息

School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.

Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China.

出版信息

Bioinformatics. 2022 Jun 24;38(Suppl 1):i325-i332. doi: 10.1093/bioinformatics/btac222.


DOI:10.1093/bioinformatics/btac222
PMID:35758801
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9235472/
Abstract

MOTIVATION: During lead compound optimization, it is crucial to identify pathways where a drug-like compound is metabolized. Recently, machine learning-based methods have achieved inspiring progress to predict potential metabolic pathways for drug-like compounds. However, they neglect the knowledge that metabolic pathways are dependent on each other. Moreover, they are inadequate to elucidate why compounds participate in specific pathways. RESULTS: To address these issues, we propose a novel Multi-Label Graph Learning framework of Metabolic Pathway prediction boosted by pathway interdependence, called MLGL-MP, which contains a compound encoder, a pathway encoder and a multi-label predictor. The compound encoder learns compound embedding representations by graph neural networks. After constructing a pathway dependence graph by re-trained word embeddings and pathway co-occurrences, the pathway encoder learns pathway embeddings by graph convolutional networks. Moreover, after adapting the compound embedding space into the pathway embedding space, the multi-label predictor measures the proximity of two spaces to discriminate which pathways a compound participates in. The comparison with state-of-the-art methods on KEGG pathways demonstrates the superiority of our MLGL-MP. Also, the ablation studies reveal how its three components contribute to the model, including the pathway dependence, the adapter between compound embeddings and pathway embeddings, as well as the pre-training strategy. Furthermore, a case study illustrates the interpretability of MLGL-MP by indicating crucial substructures in a compound, which are significantly associated with the attending metabolic pathways. It is anticipated that this work can boost metabolic pathway predictions in drug discovery. AVAILABILITY AND IMPLEMENTATION: The code and data underlying this article are freely available at https://github.com/dubingxue/MLGL-MP.

摘要

动机:在先导化合物优化过程中,识别药物样化合物代谢的途径至关重要。最近,基于机器学习的方法在预测药物样化合物的潜在代谢途径方面取得了令人鼓舞的进展。然而,它们忽略了代谢途径相互依赖的知识。此外,它们不足以阐明为什么化合物参与特定的途径。

结果:为了解决这些问题,我们提出了一种新的基于代谢途径预测的多标签图学习框架,称为 MLGL-MP,它包含化合物编码器、途径编码器和多标签预测器。化合物编码器通过图神经网络学习化合物嵌入表示。通过重新训练的词嵌入和途径共现构建途径依赖图后,途径编码器通过图卷积网络学习途径嵌入。此外,在将化合物嵌入空间适配到途径嵌入空间之后,多标签预测器测量两个空间的接近程度以区分化合物参与的途径。KEGG 途径上与最先进方法的比较证明了我们的 MLGL-MP 的优越性。此外,消融研究揭示了其三个组件如何为模型做出贡献,包括途径依赖、化合物嵌入和途径嵌入之间的适配器以及预训练策略。此外,通过指出与参与的代谢途径显著相关的化合物中的关键子结构,案例研究说明了 MLGL-MP 的可解释性。预计这项工作可以促进药物发现中的代谢途径预测。

可用性和实现:本文所依据的代码和数据可在 https://github.com/dubingxue/MLGL-MP 上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/b0a4ffe44cd0/btac222f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/dde27d7eecb7/btac222f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/904f9d4120a5/btac222f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/fa0c276aafe6/btac222f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/6f629c2d0f71/btac222f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/cfff274a0d2e/btac222f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/b0a4ffe44cd0/btac222f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/dde27d7eecb7/btac222f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/904f9d4120a5/btac222f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/fa0c276aafe6/btac222f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/6f629c2d0f71/btac222f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/cfff274a0d2e/btac222f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9201/9235472/b0a4ffe44cd0/btac222f6.jpg

相似文献

[1]
MLGL-MP: a Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction.

Bioinformatics. 2022-6-24

[2]
CMMS-GCL: cross-modality metabolic stability prediction with graph contrastive learning.

Bioinformatics. 2023-8-1

[3]
A novel hybrid framework for metabolic pathways prediction based on the graph attention network.

BMC Bioinformatics. 2022-9-28

[4]
MVML-MPI: Multi-View Multi-Label Learning for Metabolic Pathway Inference.

Brief Bioinform. 2023-9-22

[5]
A deep learning architecture for metabolic pathway prediction.

Bioinformatics. 2020-4-15

[6]
FuseLinker: Leveraging LLM's pre-trained text embeddings and domain knowledge to enhance GNN-based link prediction on biomedical knowledge graphs.

J Biomed Inform. 2024-10

[7]
Pre-training graph neural networks for link prediction in biomedical networks.

Bioinformatics. 2022-4-12

[8]
Visualizing Graph Neural Networks With CorGIE: Corresponding a Graph to Its Embedding.

IEEE Trans Vis Comput Graph. 2022-6

[9]
Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.

PLoS One. 2021

[10]
Boost-RS: boosted embeddings for recommender systems and its application to enzyme-substrate interaction prediction.

Bioinformatics. 2022-5-13

引用本文的文献

[1]
Learning motif features and topological structure of molecules for metabolic pathway prediction.

J Cheminform. 2025-4-21

[2]
Single-step retrosynthesis prediction via multitask graph representation learning.

Nat Commun. 2025-1-18

[3]
Predicting the Pathway Involvement of All Pathway and Associated Compound Entries Defined in the Kyoto Encyclopedia of Genes and Genomes.

Metabolites. 2024-10-27

[4]
Predicting the Association of Metabolites with Both Pathway Categories and Individual Pathways.

Metabolites. 2024-9-21

[5]
Predicting the Pathway Involvement of Metabolites in Both Pathway Categories and Individual Pathways.

bioRxiv. 2024-8-9

[6]
A cautionary tale about properly vetting datasets used in supervised learning predicting metabolic pathway involvement.

PLoS One. 2024

[7]
In the AI science boom, beware: your results are only as good as your data.

Nature. 2024-2-1

[8]
Benchmark Dataset for Training Machine Learning Models to Predict the Pathway Involvement of Metabolites.

Metabolites. 2023-11-1

[9]
Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites.

bioRxiv. 2023-10-9

[10]
Prediction of plant secondary metabolic pathways using deep transfer learning.

BMC Bioinformatics. 2023-9-19

本文引用的文献

[1]
High-dose vitamin B1 therapy prevents the development of experimental fatty liver driven by overnutrition.

Dis Model Mech. 2021-3-18

[2]
iMPTCE-Hnetwork: A Multilabel Classifier for Identifying Metabolic Pathway Types of Chemicals and Enzymes with a Heterogeneous Network.

Comput Math Methods Med. 2021

[3]
GraphDTA: predicting drug-target binding affinity with graph neural networks.

Bioinformatics. 2021-5-23

[4]
Analysing the meta-interaction between pathways by gene set topological impact analysis.

BMC Genomics. 2020-10-27

[5]
A deep learning architecture for metabolic pathway prediction.

Bioinformatics. 2020-4-15

[6]
New aspects of amino acid metabolism in cancer.

Br J Cancer. 2019-12-10

[7]
B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin.

CNS Neurosci Ther. 2020-1

[8]
A Network Integration Method for Deciphering the Types of Metabolic Pathway of Chemicals with Heterogeneous Information.

Comb Chem High Throughput Screen. 2018

[9]
Drug metabolism in drug discovery and development.

Acta Pharm Sin B. 2018-9

[10]
Predicting novel metabolic pathways through subgraph mining.

Bioinformatics. 2017-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索