School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States.
ACS Appl Mater Interfaces. 2022 Jul 13;14(27):30595-30606. doi: 10.1021/acsami.2c06712. Epub 2022 Jun 27.
Physical incorporation of nitric oxide (NO) releasing materials in biomedical grade polymer matrices to fabricate antimicrobial coatings and devices is an economically viable process. However, achieving long-term NO release with a minimum or no leaching of the NO donor from the polymer matrix is still a challenging task. Herein, (-acetyl--nitrosopenicillaminyl)--nitrosopenicillamine (SNAP-SNAP), a penicillamine dipeptide NO-releasing molecule, is incorporated into a commercially available biomedical grade silicone rubber (SR) to fabricate a NO-releasing coating (SNAP-SNAP/SR). The storage stabilities of the SNAP-SNAP powder and SNAP-SNAP/SR coating were analyzed at different temperatures. The SNAP-SNAP/SR coatings with varying wt % of SNAP-SNAP showed a tunable and sustained NO release for up to 6 weeks. Further, -nitroso--acetylpenicillamine (SNAP), a well-explored NO-releasing molecule, was incorporated into a biomedical grade silicone polymer to fabricate a NO-releasing coating (SNAP/SR) and a comparative analysis of the NO release and -nitrosothiol (RSNO) leaching behavior of 10 wt % SNAP-SNAP/SR and 10 wt % SNAP/SR was studied. Interestingly, the 10 wt % SNAP-SNAP/SR coatings exhibited ∼36% higher NO release and 4 times less leaching of NO donors than the 10 wt % SNAP/SR coatings. Further, the 10 wt % SNAP-SNAP/SR coatings exhibited promising antibacterial properties against and due to the persistent release of NO. The 10 wt % SNAP-SNAP/SR coatings were also found to be biocompatible against NIH 3T3 mouse fibroblast cells. These results corroborate the sustained stability and NO-releasing properties of the SNAP-SNAP in a silicone polymer matrix and demonstrate the potential for the SNAP-SNAP/SR polymer in the fabrication of long-term indwelling biomedical devices and implants to enhance biocompatibility and resist device-related infections.
将一氧化氮(NO)释放材料物理结合到生物医学级聚合物基质中,以制造抗菌涂层和装置,是一种经济可行的方法。然而,实现长期NO 释放,同时使 NO 供体从聚合物基质中最小化或不浸出,仍然是一项具有挑战性的任务。本文中,将半胱氨酰- -硝基苯并噻唑基- -硝基苯并噻唑基(SNAP-SNAP),一种苯并噻唑基二肽 NO 释放分子,掺入到市售的生物医学级硅橡胶(SR)中,以制备 NO 释放涂层(SNAP-SNAP/SR)。在不同温度下分析了 SNAP-SNAP 粉末和 SNAP-SNAP/SR 涂层的储存稳定性。具有不同 SNAP-SNAP wt%的 SNAP-SNAP/SR 涂层显示出长达 6 周的可调且持续的 NO 释放。此外,将 -硝基- -乙酰苯并噻唑基(SNAP),一种经过充分研究的 NO 释放分子,掺入到生物医学级硅酮聚合物中,以制备 NO 释放涂层(SNAP/SR),并对 10wt% SNAP-SNAP/SR 和 10wt% SNAP/SR 的 NO 释放和 -亚硝基硫醇(RSNO)浸出行为进行了比较分析。有趣的是,10wt% SNAP-SNAP/SR 涂层的 NO 释放量比 10wt% SNAP/SR 涂层高 36%,NO 供体的浸出量少 4 倍。此外,由于持续释放的 NO,10wt% SNAP-SNAP/SR 涂层对 和 表现出有希望的抗菌性能。还发现 10wt% SNAP-SNAP/SR 涂层对 NIH 3T3 小鼠成纤维细胞具有生物相容性。这些结果证实了 SNAP-SNAP 在硅酮聚合物基质中的长期稳定性和 NO 释放特性,并证明了 SNAP-SNAP/SR 聚合物在制造长期留置式生物医学装置和植入物以增强生物相容性和抵抗装置相关感染方面的潜力。