Suppr超能文献

一种用于无向图中链路预测的加权对称图嵌入方法。

A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs.

作者信息

Wang Zhixiao, Chai Yahui, Sun Chengcheng, Rui Xiaobin, Mi Hao, Zhang Xinyu, Yu Philip S

出版信息

IEEE Trans Cybern. 2024 Feb;54(2):1037-1047. doi: 10.1109/TCYB.2022.3181810. Epub 2024 Jan 17.

Abstract

Link prediction is an important task in social network analysis and mining because of its various applications. A large number of link prediction methods have been proposed. Among them, the deep learning-based embedding methods exhibit excellent performance, which encodes each node and edge as an embedding vector, enabling easy integration with traditional machine learning algorithms. However, there still remain some unsolved problems for this kind of methods, especially in the steps of node embedding and edge embedding. First, they either share exactly the same weight among all neighbors or assign a completely different weight to each node to obtain the node embedding. Second, they can hardly keep the symmetry of edge embeddings obtained from node representations by direct concatenation or other binary operations such as averaging and Hadamard product. In order to solve these problems, we propose a weighted symmetric graph embedding approach for link prediction. In node embedding, the proposed approach aggregates neighbors in different orders with different aggregating weights. In edge embedding, the proposed approach bidirectionally concatenates node pairs both forwardly and backwardly to guarantee the symmetry of edge representations while preserving local structural information. The experimental results show that our proposed approach can better predict network links, outperforming the state-of-the-art methods. The appropriate aggregating weight assignment and the bidirectional concatenation enable us to learn more accurate and symmetric edge representations for link prediction.

摘要

由于其广泛的应用,链接预测是社交网络分析与挖掘中的一项重要任务。大量的链接预测方法已被提出。其中,基于深度学习的嵌入方法表现出优异的性能,该方法将每个节点和边编码为一个嵌入向量,便于与传统机器学习算法集成。然而,这类方法仍然存在一些未解决的问题,特别是在节点嵌入和边嵌入步骤中。首先,它们要么在所有邻居之间共享完全相同的权重,要么为每个节点分配完全不同的权重以获得节点嵌入。其次,通过直接拼接或其他二元运算(如平均和哈达玛积)从节点表示中获得的边嵌入,它们很难保持其对称性。为了解决这些问题,我们提出了一种用于链接预测的加权对称图嵌入方法。在节点嵌入中,该方法以不同的聚合权重按不同顺序聚合邻居。在边嵌入中,该方法向前和向后双向拼接节点对,以保证边表示的对称性,同时保留局部结构信息。实验结果表明,我们提出的方法能够更好地预测网络链接,优于现有方法。适当的聚合权重分配和双向拼接使我们能够为链接预测学习更准确和对称的边表示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验