Institute of Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University, 79104 Freiburg, Germany.
Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University, 79104 Freiburg, Germany.
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2123090119. doi: 10.1073/pnas.2123090119. Epub 2022 Jun 27.
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is essential for cellular energy metabolism coupling NADH oxidation to proton translocation. The mechanism of proton translocation by complex I is still under debate. Its membrane arm contains an unusual central axis of polar and charged amino acid residues connecting the quinone binding site with the antiporter-type subunits NuoL, NuoM, and NuoN, proposed to catalyze proton translocation. Quinone chemistry probably causes conformational changes and electrostatic interactions that are propagated through these subunits by a conserved pattern of predominantly lysine, histidine, and glutamate residues. These conserved residues are thought to transfer protons along and across the membrane arm. The distinct charge distribution in the membrane arm is a prerequisite for proton translocation. Remarkably, the central subunit NuoM contains a conserved glutamate residue in a position that is taken by a lysine residue in the two other antiporter-type subunits. It was proposed that this charge asymmetry is essential for proton translocation, as it should enable NuoM to operate asynchronously with NuoL and NuoN. Accordingly, we exchanged the conserved glutamate in NuoM for a lysine residue, introducing charge symmetry in the membrane arm. The stably assembled variant pumps protons across the membrane, but with a diminished H/e stoichiometry of 1.5. Thus, charge asymmetry is not essential for proton translocation by complex I, casting doubts on the suggestion of an asynchronous operation of NuoL, NuoM, and NuoN. Furthermore, our data emphasize the importance of a balanced charge distribution in the protein for directional proton transfer.
能将 NADH 转化为泛醌的氧化还原酶,即呼吸复合物 I,对于细胞能量代谢将 NADH 的氧化与质子转运偶联至关重要。复合物 I 的质子转运机制仍存在争议。它的膜臂包含一个不寻常的极性和带电氨基酸残基的中央轴,将醌结合位点与反向转运蛋白型亚基 NuoL、NuoM 和 NuoN 连接起来,这些亚基被认为可以催化质子转运。醌化学可能会引起构象变化和静电相互作用,这些变化通过主要由赖氨酸、组氨酸和谷氨酸残基组成的保守模式在这些亚基中传播。这些保守残基被认为可以沿着和穿过膜臂转移质子。膜臂中的独特电荷分布是质子转运的先决条件。值得注意的是,中央亚基 NuoM 中的一个保守谷氨酸残基位于另外两个反向转运蛋白型亚基中的赖氨酸残基的位置。有人提出,这种电荷不对称性对于质子转运至关重要,因为它应该使 NuoM 能够与 NuoL 和 NuoN 异步运行。因此,我们将 NuoM 中的保守谷氨酸残基替换为赖氨酸残基,在膜臂中引入电荷对称性。稳定组装的变体可以跨膜泵出质子,但 H/e 化学计量比为 1.5。因此,电荷不对称性对于复合物 I 的质子转运并非必不可少,这对 NuoL、NuoM 和 NuoN 异步运行的建议提出了质疑。此外,我们的数据强调了蛋白质中平衡的电荷分布对于定向质子转移的重要性。