Ingle Aviraj, Singh Mandeep, Tawfik Sherif Abdulkader, Murdoch Billy James, Harrop Mayes Edwin Lawrence, Sapountzis Spencer Michelle Jeanette, Ramanathan Rajesh, Bansal Vipul
Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
ACS Nano. 2022 Jul 26;16(7):10679-10691. doi: 10.1021/acsnano.2c02432. Epub 2022 Jun 27.
The emergence of attractive properties in materials at atomically thin regimes has seen an ongoing interest in two-dimensional (2D) materials. An aspect that has lacked focused attention is the effect of 2D material thickness on its crystal structure. As several layered materials naturally exist in mixed metastable phases, it raises an important question of whether a specific polymorph of these mixed-phase materials will be favored at atomically thin limits. This work attempts to address this issue by employing lead monoxide as a model 2D polymorphic system. We propose a reactive oxygen species (ROS) sequestration-mediated liquid-phase exfoliation (LPE) strategy for the facile synthesis of ultrathin PbO. This is followed by a suite of microscopic and spectroscopic analyses of the PbO nanosheets that reveals the polymorphic transformation of orthorhombic (β) PbO to its tetragonal (α) analogue with reduction in nanosheet thickness. The transformation process reveals an interesting crystal structure of ultrathin 2D PbO where [001]-oriented domains of α-PbO coexist alongside [100]-oriented regions of β-PbO. Density functional theory (DFT) calculations support our experimental data by revealing a higher thermodynamic stability of the tetragonal phase in PbO monolayers. These findings are likely to instigate interest in carefully evaluating the crystal structures of ultrathin 2D materials while promoting research in understanding the phase transformation across a range of 2D crystals.
材料在原子级薄的状态下展现出吸引人的特性,这使得人们对二维(2D)材料的兴趣持续升温。一个尚未得到重点关注的方面是二维材料厚度对其晶体结构的影响。由于几种层状材料自然存在于混合亚稳相中,这就引发了一个重要问题:在原子级薄的极限情况下,这些混合相材料的特定多晶型是否会更受青睐。这项工作试图通过使用一氧化铅作为二维多晶型系统的模型来解决这个问题。我们提出了一种活性氧物种(ROS)螯合介导的液相剥离(LPE)策略,用于简便地合成超薄PbO。随后对PbO纳米片进行了一系列微观和光谱分析,结果表明随着纳米片厚度的减小,正交晶系(β)PbO向其四方晶系(α)类似物发生了多晶型转变。转变过程揭示了超薄二维PbO有趣的晶体结构,其中α - PbO的[001]取向畴与β - PbO的[100]取向区域共存。密度泛函理论(DFT)计算通过揭示PbO单层中四方相具有更高的热力学稳定性,支持了我们的实验数据。这些发现可能会激发人们仔细评估超薄二维材料晶体结构的兴趣,同时推动对理解一系列二维晶体相变的研究。