Suppr超能文献

基因素交联纤维蛋白负载氧化海藻酸钠微球作为一种新型的椎间盘细胞治疗复合生物材料策略。

Genipin-crosslinked fibrin seeded with oxidized alginate microbeads as a novel composite biomaterial strategy for intervertebral disc cell therapy.

机构信息

Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA.

出版信息

Biomaterials. 2022 Aug;287:121641. doi: 10.1016/j.biomaterials.2022.121641. Epub 2022 Jun 17.

Abstract

Discectomy procedures alleviate disability caused by intervertebral disc (IVD) herniation, but do not repair herniation-induced annulus fibrosus (AF) defects. Cell therapy shows promise for IVD repair, yet cell delivery biomaterials capable of sealing AF defects and restoring biomechanical function have poor biological performance. To balance the biomechanical and biological demands of IVD cell delivery biomaterials, we engineered an injectable composite biomaterial using cell-laden, degradable oxidized alginate (OxAlg) microbeads (MBs) to deliver AF cells within high-modulus genipin-crosslinked fibrin (FibGen) hydrogels (FibGen + MB composites). Conceptually, the high-modulus FibGen would immediately stabilize injured IVDs, while OxAlg MBs would protect and release cells required for long-term healing. We first showed that AF cells microencapsulated in OxAlg MBs maintained high viability and, upon release, displayed phenotypic AF cell morphology and gene expression. Next, we created cell-laden FibGen + MB composites and demonstrated that OxAlg MBs functionalized with RGD peptides (MB-RGD) minimized AF cell apoptosis and retained phenotypic gene expression. Further, we showed that cell-laden FibGen + MB composites are biomechanically stable and promote extracellular matrix (ECM) synthesis in long-term in vitro culture. Lastly, we evaluated cell-laden FibGen + MB-RGD composites in a long-term bovine caudal IVD organ culture bioreactor and found that composites had low herniation risk, provided superior biomechanical and biological repair to discectomy controls, and retained anabolic cells within the IVD injury space. This novel injectable composite hydrogel strategy shows promise as an IVD cell delivery sealant with potentially broad applications for its capacity to balance biomechanical and biological performance.

摘要

椎间盘切除术缓解了椎间盘(IVD)疝引起的残疾,但不能修复疝引起的纤维环(AF)缺陷。细胞疗法为 IVD 修复带来了希望,但能够密封 AF 缺陷并恢复生物力学功能的细胞输送生物材料的生物性能较差。为了平衡 IVD 细胞输送生物材料的生物力学和生物学需求,我们使用载细胞的可降解氧化海藻酸钠(OxAlg)微球(MB)设计了一种可注射的复合生物材料,以在高模量京尼平交联纤维蛋白(FibGen)水凝胶(FibGen+MB 复合材料)内输送 AF 细胞。从概念上讲,高模量的 FibGen 将立即稳定受伤的 IVD,而 OxAlg MB 将保护和释放长期愈合所需的细胞。我们首先表明,包封在 OxAlg MB 中的 AF 细胞保持高活力,并且在释放后显示出表型 AF 细胞形态和基因表达。接下来,我们创建了载细胞的 FibGen+MB 复合材料,并表明用 RGD 肽功能化的 OxAlg MB(MB-RGD)最大限度地减少了 AF 细胞凋亡并保留了表型基因表达。此外,我们表明载细胞的 FibGen+MB 复合材料在长期体外培养中具有生物力学稳定性并促进细胞外基质(ECM)合成。最后,我们在长期牛尾椎间盘器官培养生物反应器中评估了载细胞的 FibGen+MB-RGD 复合材料,发现复合材料疝风险低,与椎间盘切除术对照组相比提供了优越的生物力学和生物学修复,并在 IVD 损伤空间内保留了合成代谢细胞。这种新型可注射复合水凝胶策略有望成为一种 IVD 细胞输送密封剂,具有广泛的应用潜力,因为它能够平衡生物力学和生物学性能。

相似文献

引用本文的文献

2
Self-healing injectable multifunctional hydrogels for intervertebral disc disease.用于椎间盘疾病的自愈合可注射多功能水凝胶
Mater Today Bio. 2025 Mar 11;32:101655. doi: 10.1016/j.mtbio.2025.101655. eCollection 2025 Jun.
3
3D Mechanical Confinement Directs Muscle Stem Cell Fate and Function.三维机械限制引导肌肉干细胞的命运和功能。
Adv Biol (Weinh). 2025 Apr;9(4):e2400717. doi: 10.1002/adbi.202400717. Epub 2025 Mar 4.
4
Designing hydrogel for application in spinal surgery.设计用于脊柱手术的水凝胶。
Mater Today Bio. 2025 Feb 3;31:101536. doi: 10.1016/j.mtbio.2025.101536. eCollection 2025 Apr.

本文引用的文献

1
A bovine nucleus pulposus explant culture model.牛髓核组织块培养模型。
J Orthop Res. 2022 Sep;40(9):2089-2102. doi: 10.1002/jor.25226. Epub 2021 Dec 5.
3
Review of in vitro mechanical testing for intervertebral disc injectable biomaterials.椎间盘内注射生物材料的体外力学测试综述。
J Mech Behav Biomed Mater. 2021 Nov;123:104703. doi: 10.1016/j.jmbbm.2021.104703. Epub 2021 Jul 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验