Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA.
Biomaterials. 2022 Aug;287:121641. doi: 10.1016/j.biomaterials.2022.121641. Epub 2022 Jun 17.
Discectomy procedures alleviate disability caused by intervertebral disc (IVD) herniation, but do not repair herniation-induced annulus fibrosus (AF) defects. Cell therapy shows promise for IVD repair, yet cell delivery biomaterials capable of sealing AF defects and restoring biomechanical function have poor biological performance. To balance the biomechanical and biological demands of IVD cell delivery biomaterials, we engineered an injectable composite biomaterial using cell-laden, degradable oxidized alginate (OxAlg) microbeads (MBs) to deliver AF cells within high-modulus genipin-crosslinked fibrin (FibGen) hydrogels (FibGen + MB composites). Conceptually, the high-modulus FibGen would immediately stabilize injured IVDs, while OxAlg MBs would protect and release cells required for long-term healing. We first showed that AF cells microencapsulated in OxAlg MBs maintained high viability and, upon release, displayed phenotypic AF cell morphology and gene expression. Next, we created cell-laden FibGen + MB composites and demonstrated that OxAlg MBs functionalized with RGD peptides (MB-RGD) minimized AF cell apoptosis and retained phenotypic gene expression. Further, we showed that cell-laden FibGen + MB composites are biomechanically stable and promote extracellular matrix (ECM) synthesis in long-term in vitro culture. Lastly, we evaluated cell-laden FibGen + MB-RGD composites in a long-term bovine caudal IVD organ culture bioreactor and found that composites had low herniation risk, provided superior biomechanical and biological repair to discectomy controls, and retained anabolic cells within the IVD injury space. This novel injectable composite hydrogel strategy shows promise as an IVD cell delivery sealant with potentially broad applications for its capacity to balance biomechanical and biological performance.
椎间盘切除术缓解了椎间盘(IVD)疝引起的残疾,但不能修复疝引起的纤维环(AF)缺陷。细胞疗法为 IVD 修复带来了希望,但能够密封 AF 缺陷并恢复生物力学功能的细胞输送生物材料的生物性能较差。为了平衡 IVD 细胞输送生物材料的生物力学和生物学需求,我们使用载细胞的可降解氧化海藻酸钠(OxAlg)微球(MB)设计了一种可注射的复合生物材料,以在高模量京尼平交联纤维蛋白(FibGen)水凝胶(FibGen+MB 复合材料)内输送 AF 细胞。从概念上讲,高模量的 FibGen 将立即稳定受伤的 IVD,而 OxAlg MB 将保护和释放长期愈合所需的细胞。我们首先表明,包封在 OxAlg MB 中的 AF 细胞保持高活力,并且在释放后显示出表型 AF 细胞形态和基因表达。接下来,我们创建了载细胞的 FibGen+MB 复合材料,并表明用 RGD 肽功能化的 OxAlg MB(MB-RGD)最大限度地减少了 AF 细胞凋亡并保留了表型基因表达。此外,我们表明载细胞的 FibGen+MB 复合材料在长期体外培养中具有生物力学稳定性并促进细胞外基质(ECM)合成。最后,我们在长期牛尾椎间盘器官培养生物反应器中评估了载细胞的 FibGen+MB-RGD 复合材料,发现复合材料疝风险低,与椎间盘切除术对照组相比提供了优越的生物力学和生物学修复,并在 IVD 损伤空间内保留了合成代谢细胞。这种新型可注射复合水凝胶策略有望成为一种 IVD 细胞输送密封剂,具有广泛的应用潜力,因为它能够平衡生物力学和生物学性能。