Suppr超能文献

通过嵌段共聚物自组装衍生的纳米结构表面来控制润湿滞后现象。

Toward controlling wetting hysteresis with nanostructured surfaces derived from block copolymer self-assembly.

作者信息

Al Hossain Aktaruzzaman, Dick Austin, Doerk Gregory, Colosqui Carlos E

机构信息

Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, United States of America.

Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America.

出版信息

Nanotechnology. 2022 Aug 23;33(45). doi: 10.1088/1361-6528/ac7c24.

Abstract

The synthesis of nanostructured surfaces via block copolymer (BCP) self-assembly enables a precise control of the surface feature shape within a range of dimensions of the order of tens of nanometers. This work studies how to exploit this ability to control the wetting hysteresis and liquid adhesion forces as the substrate undergoes chemical aging and changes in its intrinsic wettability. Via BCP self-assembly we fabricate nanostructured surfaces on silicon substrates with a hexagonal array of regular conical pillars having a fixed period (52 nm) and two different heights (60 and 200 nm), which results in substantially different lateral and top surface areas of the nanostructure. The wetting hysteresis of the fabricated surfaces is characterized using force-displacement measurements under quasistaic conditions and over sufficiently long periods of time for which the substrate chemistry and surface energy, characterized by the Young contact angle, varies significantly. The experimental results and theoretical analysis indicate that controlling the lateral and top area of the nanostructure not only controls the degree of wetting hysteresis but can also make the advancing and receding contact angles less susceptible to chemical aging. These results can help rationalize the design of nanostructured surfaces for different applications such as self-cleaning, enhanced heat transfer, and drag reduction in micro/nanofluidic devices.

摘要

通过嵌段共聚物(BCP)自组装合成纳米结构表面,能够在几十纳米量级的尺寸范围内精确控制表面特征形状。这项工作研究了如何利用这种能力来控制基底发生化学老化并改变其固有润湿性时的润湿滞后和液体粘附力。通过BCP自组装,我们在硅基底上制备了具有规则锥形柱六边形阵列的纳米结构表面,这些柱具有固定周期(52纳米)和两种不同高度(60和200纳米),这导致纳米结构的横向和顶面面积有很大差异。使用准静态条件下的力-位移测量以及在足够长的时间内对制备表面的润湿滞后进行表征,在此期间,以杨氏接触角表征的基底化学性质和表面能会发生显著变化。实验结果和理论分析表明,控制纳米结构的横向和顶面面积不仅可以控制润湿滞后程度,还可以使前进和后退接触角对化学老化的敏感度降低。这些结果有助于合理设计用于不同应用的纳米结构表面,如自清洁、强化传热以及微纳流体装置中的减阻。

相似文献

3
Surfactant solutions and porous substrates: spreading and imbibition.表面活性剂溶液与多孔基质:铺展与吸液
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
10
Wetting Behavior of Surface Nanodroplets Regulated by Periodic Nanostructured Surfaces.周期性纳米结构表面调控的表面纳米液滴的润湿性
ACS Appl Mater Interfaces. 2021 Nov 24;13(46):55726-55734. doi: 10.1021/acsami.1c17139. Epub 2021 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验