Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.
Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.
J Biol Chem. 2022 Aug;298(8):102196. doi: 10.1016/j.jbc.2022.102196. Epub 2022 Jun 24.
In human cells, ATP is generated using oxidative phosphorylation machinery, which is inoperable without proteins encoded by mitochondrial DNA (mtDNA). The DNA polymerase gamma (Polγ) repairs and replicates the multicopy mtDNA genome in concert with additional factors. The Polγ catalytic subunit is encoded by the POLG gene, and mutations in this gene cause mtDNA genome instability and disease. Barriers to studying the molecular effects of disease mutations include scarcity of patient samples and a lack of available mutant models; therefore, we developed a human SJCRH30 myoblast cell line model with the most common autosomal dominant POLG mutation, c.2864A>G/p.Y955C, as individuals with this mutation can present with progressive skeletal muscle weakness. Using on-target sequencing, we detected a 50% conversion frequency of the mutation, confirming heterozygous Y955C substitution. We found mutated cells grew slowly in a glucose-containing medium and had reduced mitochondrial bioenergetics compared with the parental cell line. Furthermore, growing Y955C cells in a galactose-containing medium to obligate mitochondrial function enhanced these bioenergetic deficits. Also, we show complex I NDUFB8 and ND3 protein levels were decreased in the mutant cell line, and the maintenance of mtDNA was severely impaired (i.e., lower copy number, fewer nucleoids, and an accumulation of Y955C-specific replication intermediates). Finally, we show the mutant cells have increased sensitivity to the mitochondrial toxicant 2'-3'-dideoxycytidine. We expect this POLG Y955C cell line to be a robust system to identify new mitochondrial toxicants and therapeutics to treat mitochondrial dysfunction.
在人类细胞中,ATP 是通过氧化磷酸化机制产生的,而没有线粒体 DNA(mtDNA)编码的蛋白质,该机制就无法运作。DNA 聚合酶 γ(Polγ)与其他因素协同作用修复和复制多拷贝 mtDNA 基因组。Polγ 催化亚基由 POLG 基因编码,该基因的突变会导致 mtDNA 基因组不稳定和疾病。研究疾病突变的分子影响存在障碍,包括患者样本稀缺和缺乏可用的突变模型;因此,我们开发了一种具有最常见常染色体显性 POLG 突变 c.2864A>G/p.Y955C 的 SJCRH30 成肌细胞系模型,该突变个体可能表现出进行性骨骼肌无力。使用靶向测序,我们检测到突变的转换频率为 50%,证实了杂合子 Y955C 取代。我们发现突变细胞在含有葡萄糖的培养基中生长缓慢,与亲本细胞系相比线粒体生物能学降低。此外,在含有半乳糖的培养基中培养 Y955C 细胞以强制线粒体功能增强了这些生物能缺陷。此外,我们还表明,突变细胞中线粒体复合物 I NDUFB8 和 ND3 蛋白水平降低,并且 mtDNA 的维持严重受损(即拷贝数较低、核体较少且积累了特定于 Y955C 的复制中间体)。最后,我们发现突变细胞对线粒体毒物 2'-3'-双脱氧胞苷更敏感。我们期望这个 POLG Y955C 细胞系成为一个强大的系统,可以识别新的线粒体毒物和治疗线粒体功能障碍的疗法。