Rakowski Rafal, Zhang Ping, Jensen Kyle, Kettle Brendan, Kawamoto Tim, Banerjee Sudeep, Fruhling Colton, Golovin Grigory, Haden Daniel, Robinson Matthew S, Umstadter Donald, Shadwick B A, Fuchs Matthias
Department of Physics and Astronomy, University of Nebraska - Lincoln, Lincoln, NE, 68588, USA.
Sci Rep. 2022 Jun 27;12(1):10855. doi: 10.1038/s41598-022-14748-z.
Ultrafast high-brightness X-ray pulses have proven invaluable for a broad range of research. Such pulses are typically generated via synchrotron emission from relativistic electron bunches using large-scale facilities. Recently, significantly more compact X-ray sources based on laser-wakefield accelerated (LWFA) electron beams have been demonstrated. In particular, laser-driven sources, where the radiation is generated by transverse oscillations of electrons within the plasma accelerator structure (so-called betatron oscillations) can generate highly-brilliant ultrashort X-ray pulses using a comparably simple setup. Here, we experimentally demonstrate a method to markedly enhance the parameters of LWFA-driven betatron X-ray emission in a proof-of-principle experiment. We show a significant increase in the number of generated photons by specifically manipulating the amplitude of the betatron oscillations by using our novel Transverse Oscillating Bubble Enhanced Betatron Radiation scheme. We realize this through an orchestrated evolution of the temporal laser pulse shape and the accelerating plasma structure. This leads to controlled off-axis injection of electrons that perform large-amplitude collective transverse betatron oscillations, resulting in increased radiation emission. Our concept holds the promise for a method to optimize the X-ray parameters for specific applications, such as time-resolved investigations with spatial and temporal atomic resolution or advanced high-resolution imaging modalities, and the generation of X-ray beams with even higher peak and average brightness.
超快高亮度X射线脉冲已被证明对广泛的研究具有极高价值。此类脉冲通常通过使用大型设施,由相对论电子束的同步辐射产生。最近,基于激光尾波场加速(LWFA)电子束的更为紧凑的X射线源已得到证实。特别是激光驱动源,其中辐射由等离子体加速器结构内电子的横向振荡(所谓的回旋振荡)产生,它可以使用相对简单的装置产生高亮度超短X射线脉冲。在此,我们在原理验证实验中通过实验展示了一种显著提高LWFA驱动的回旋X射线发射参数的方法。我们通过使用我们新颖的横向振荡气泡增强回旋辐射方案,通过专门控制回旋振荡的幅度,展示了所产生光子数量的显著增加。我们通过精心设计时间激光脉冲形状和加速等离子体结构的演化来实现这一点。这导致电子的可控离轴注入,这些电子进行大幅度集体横向回旋振荡,从而增加辐射发射。我们的概念有望成为一种针对特定应用优化X射线参数的方法,例如具有空间和时间原子分辨率的时间分辨研究或先进的高分辨率成像模式,以及产生具有更高峰值和平均亮度的X射线束。