Suppr超能文献

激光等离子体加速器中电离注入电子产生的共振增强电子感应加速器硬X射线。

Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

作者信息

Huang K, Li Y F, Li D Z, Chen L M, Tao M Z, Ma Y, Zhao J R, Li M H, Chen M, Mirzaie M, Hafz N, Sokollik T, Sheng Z M, Zhang J

机构信息

Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.

Institute of High Energy Physics, CAS, Beijing 100049, China.

出版信息

Sci Rep. 2016 Jun 8;6:27633. doi: 10.1038/srep27633.

Abstract

Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons.

摘要

激光尾场加速(LWFA)中电子振荡产生的超快电子回旋加速器X射线发射作为一种有前景的光源已被广泛研究。电子回旋加速器X射线通常通过自注入电子束产生,这种电子束不可控且未针对X射线产率进行优化。在此,我们提出一种新方法,通过将氮的K壳层电子电离注入到加速桶中实现明亮的硬X射线发射。获得了每次脉冲8×10⁸个光子的总光子产率以及10⁸个能量大于110 keV的光子。在相似激光参数下,该产率比氦气中自注入模式所达到的产率高10倍。模拟表明,电离注入的电子被快速加速到驱动激光区域,随后被驱动进入电子回旋加速器共振。本方案能使LWFA的单级电子回旋加速器辐射扩展到明亮的γ射线辐射,这是第三代同步加速器所无法做到的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd04/4917722/fa432eac6956/srep27633-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验