Suppr超能文献

一种渐进式三状态模型来估计癌症发生时间:基于似然的方法。

A progressive three-state model to estimate time to cancer: a likelihood-based approach.

机构信息

Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health, Amsterdam, The Netherlands.

Clinical Effectiveness Research Group, University of Oslo and Oslo University Hospital, Oslo, Norway.

出版信息

BMC Med Res Methodol. 2022 Jun 27;22(1):179. doi: 10.1186/s12874-022-01645-2.

Abstract

BACKGROUND

To optimize colorectal cancer (CRC) screening and surveillance, information regarding the time-dependent risk of advanced adenomas (AA) to develop into CRC is crucial. However, since AA are removed after diagnosis, the time from AA to CRC cannot be observed in an ethically acceptable manner. We propose a statistical method to indirectly infer this time in a progressive three-state disease model using surveillance data.

METHODS

Sixteen models were specified, with and without covariates. Parameters of the parametric time-to-event distributions from the adenoma-free state (AF) to AA and from AA to CRC were estimated simultaneously, by maximizing the likelihood function. Model performance was assessed via simulation. The methodology was applied to a random sample of 878 individuals from a Norwegian adenoma cohort.

RESULTS

Estimates of the parameters of the time distributions are consistent and the 95% confidence intervals (CIs) have good coverage. For the Norwegian sample (AF: 78%, AA: 20%, CRC: 2%), a Weibull model for both transition times was selected as the final model based on information criteria. The mean time among those who have made the transition to CRC since AA onset within 50 years was estimated to be 4.80 years (95% CI: 0; 7.61). The 5-year and 10-year cumulative incidence of CRC from AA was 13.8% (95% CI: 7.8%;23.8%) and 15.4% (95% CI: 8.2%;34.0%), respectively.

CONCLUSIONS

The time-dependent risk from AA to CRC is crucial to explain differences in the outcomes of microsimulation models used for the optimization of CRC prevention. Our method allows for improving models by the inclusion of data-driven time distributions.

摘要

背景

为了优化结直肠癌(CRC)的筛查和监测,了解高级腺瘤(AA)发展为 CRC 的时间依赖性风险至关重要。然而,由于 AA 在诊断后被切除,因此无法以符合伦理的方式观察从 AA 到 CRC 的时间。我们提出了一种统计方法,通过使用监测数据在渐进的三状态疾病模型中间接推断该时间。

方法

指定了 16 个模型,包括有和没有协变量的模型。通过最大化似然函数,同时估计无腺瘤状态(AF)到 AA 和从 AA 到 CRC 的参数。通过模拟评估模型性能。该方法应用于来自挪威腺瘤队列的 878 名随机个体的样本。

结果

时间分布参数的估计值是一致的,95%置信区间(CI)有良好的覆盖范围。对于挪威样本(AF:78%,AA:20%,CRC:2%),基于信息准则,Weibull 模型被选为两个转移时间的最终模型。在 50 年内从 AA 发展为 CRC 的人群中,估计自 AA 发病以来的平均时间为 4.80 年(95%CI:0;7.61)。AA 后 5 年和 10 年 CRC 的累积发生率分别为 13.8%(95%CI:7.8%;23.8%)和 15.4%(95%CI:8.2%;34.0%)。

结论

从 AA 到 CRC 的时间依赖性风险对于解释用于优化 CRC 预防的微模拟模型结果的差异至关重要。我们的方法允许通过包含数据驱动的时间分布来改进模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74cf/9235269/b8dd2a75de17/12874_2022_1645_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验