Suppr超能文献

层次随机游走分割大规模容积生物医学图像。

Hierarchical Random Walker Segmentation for Large Volumetric Biomedical Images.

出版信息

IEEE Trans Image Process. 2022;31:4431-4446. doi: 10.1109/TIP.2022.3185551. Epub 2022 Jul 1.

Abstract

The random walker method for image segmentation is a popular tool for semi-automatic image segmentation, especially in the biomedical field. However, its linear asymptotic run time and memory requirements make application to 3D datasets of increasing sizes impractical. We propose a hierarchical framework that, to the best of our knowledge, is the first attempt to overcome these restrictions for the random walker algorithm and achieves sublinear run time and constant memory complexity. The goal of this framework is- rather than improving the segmentation quality compared to the baseline method- to make interactive segmentation on out-of-core datasets possible. The method is evaluated quantitatively on synthetic data and the CT-ORG dataset where the expected improvements in algorithm run time while maintaining high segmentation quality are confirmed. The incremental (i.e., interaction update) run time is demonstrated to be in seconds on a standard PC even for volumes of hundreds of gigabytes in size. In a small case study the applicability to large real world from current biomedical research is demonstrated. An implementation of the presented method is publicly available in version 5.2 of the widely used volume rendering and processing software Voreen (https://www.uni-muenster.de/Voreen/).

摘要

随机游走方法是一种用于半自动图像分割的流行工具,特别是在生物医学领域。然而,它的线性渐近运行时间和内存需求使得其无法应用于越来越大的 3D 数据集。我们提出了一个分层框架,据我们所知,这是首次尝试克服随机游走算法的这些限制,并实现次线性运行时间和常数内存复杂度。该框架的目标是——与基线方法相比,不是提高分割质量——而是使基于核外数据集的交互式分割成为可能。该方法在合成数据和 CT-ORG 数据集上进行了定量评估,确认了在保持高分割质量的同时,算法运行时间的预期改进。即使对于数百千兆字节大小的体积,标准 PC 上的增量(即交互更新)运行时间也证明在秒级范围内。在一个小型案例研究中,展示了其在当前生物医学研究中大体积真实数据上的适用性。所提出方法的实现可在广泛使用的体绘制和处理软件 Voreen 的版本 5.2 中获得(https://www.uni-muenster.de/Voreen/)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验