肌萎缩侧索硬化症中脑网络指纹的渐进性丧失可预测临床损伤。
The progressive loss of brain network fingerprints in Amyotrophic Lateral Sclerosis predicts clinical impairment.
机构信息
Department of Motor Sciences and Wellness - University of Naples "Parthenope", via Medina 40, 80133 Naples, Italy.
Department of Social and Developmental Psychology, University of Rome "Sapienza", Italy.
出版信息
Neuroimage Clin. 2022;35:103095. doi: 10.1016/j.nicl.2022.103095. Epub 2022 Jun 23.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by functional connectivity alterations in both motor and extra-motor brain regions. Within the framework of network analysis, fingerprinting represents a reliable approach to assess subject-specific connectivity features within a given population (healthy or diseased). Here, we applied the Clinical Connectome Fingerprint (CCF) analysis to source-reconstructed magnetoencephalography (MEG) signals in a cohort of seventy-eight subjects: thirty-nine ALS patients and thirty-nine healthy controls. We set out to develop an identifiability matrix to assess the extent to which each patient was recognisable based on his/her connectome, as compared to healthy controls. The analysis was performed in the five canonical frequency bands. Then, we built a multilinear regression model to test the ability of the "clinical fingerprint" to predict the clinical evolution of the disease, as assessed by the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-r), the King's disease staging system, and the Milano-Torino Staging (MiToS) disease staging system. We found a drop in the identifiability of patients in the alpha band compared to the healthy controls. Furthermore, the "clinical fingerprint" was predictive of the ALSFRS-r (p = 0.0397; β = 32.8), the King's (p = 0.0001; β = -7.40), and the MiToS (p = 0.0025; β = -4.9) scores. Accordingly, it negatively correlated with the King's (Spearman's rho = -0.6041, p = 0.0003) and MiToS scales (Spearman's rho = -0.4953, p = 0.0040). Our results demonstrated the ability of the CCF approach to predict the individual motor impairment in patients affected by ALS. Given the subject-specificity of our approach, we hope to further exploit it to improve disease management.
肌萎缩侧索硬化症(ALS)是一种神经退行性疾病,其特征是运动和运动外脑区的功能连接改变。在网络分析框架内,指纹代表了评估特定人群(健康或患病)中特定连接特征的可靠方法。在这里,我们应用临床连接指纹(CCF)分析方法对 78 名受试者的源重建脑磁图(MEG)信号进行分析:39 名 ALS 患者和 39 名健康对照者。我们旨在开发一个可识别矩阵,以评估每个患者基于其连接组与健康对照组相比的可识别程度。该分析在五个典型的频率带中进行。然后,我们建立了一个多线性回归模型,以测试“临床指纹”预测疾病临床进展的能力,由肌萎缩侧索硬化功能评定量表修订版(ALSFRS-r)、King 疾病分期系统和米兰-都灵分期(MiToS)疾病分期系统评估。与健康对照组相比,我们发现患者在 alpha 波段的可识别性下降。此外,“临床指纹”可预测 ALSFRS-r(p=0.0397;β=32.8)、King(p=0.0001;β=-7.40)和 MiToS(p=0.0025;β=-4.9)评分。因此,它与 King(Spearman rho=-0.6041,p=0.0003)和 MiToS 量表(Spearman rho=-0.4953,p=0.0040)呈负相关。我们的结果表明,CCF 方法能够预测 ALS 患者的个体运动障碍。鉴于我们方法的个体特异性,我们希望进一步利用它来改善疾病管理。