Cassone Barbara, Saviola Francesca, Tambalo Stefano, Amico Enrico, Hübner Sebastian, Sarubbo Silvio, Van De Ville Dimitri, Jovicich Jorge
CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Trento, Italy.
Department of Psychology, University of Milano-Bicocca, Milan, Italy.
Hum Brain Mapp. 2025 Feb 1;46(2):e70125. doi: 10.1002/hbm.70125.
Functional brain fingerprinting has emerged as an influential tool to quantify reliability in neuroimaging studies and to identify cognitive biomarkers in both healthy and clinical populations. Recent studies have revealed that brain fingerprints reside in the timescale-specific functional connectivity of particular brain regions. However, the impact of the acquisition's temporal resolution on fingerprinting remains unclear. In this study, we examine for the first time the reliability of functional fingerprinting derived from resting-state functional MRI (rs-fMRI) with different whole-brain temporal resolutions (TR = 0.5, 0.7, 1, 2, and 3 s) in a cohort of 20 healthy volunteers. Our findings indicate that subject identifiability within a fixed TR is successful across different temporal resolutions, with the highest identifiability observed at TR 0.5 and 3 s (TR(s)/identifiability(%): 0.5/64; 0.7/47; 1/44; 2/44; 3/56). We discuss this observation in terms of protocol-specific effects of physiological noise aliasing. We further show that, irrespective of TR, associative brain areas make an higher contribution to subject identifiability (functional connections with highest mean ICC: within subcortical network [SUB; ICC = 0.0387], within default mode network [DMN; ICC = 0.0058]; between DMN and somato-motor [SM] network [ICC = 0.0013]; between ventral attention network [VA] and DMN [ICC = 0.0008]; between VA and SM [ICC = 0.0007]), whereas sensory-motor regions become more influential when integrating data from different TRs (functional connections with highest mean ICC: within fronto-parietal network [ICC = 0.382], within dorsal attention network [DA; ICC = 0.373]; within SUB [ICC = 0.367]; between visual network [VIS] and DA [ICC = 0.362]; within VIS [ICC = 0.358]). We conclude that functional connectivity fingerprinting derived from rs-fMRI holds significant potential for multicentric studies also employing protocols with different temporal resolutions. However, it remains crucial to consider fMRI signal's sampling rate differences in subject identifiability between data samples, in order to improve reliability and generalizability of both whole-brain and specific functional networks' results. These findings contribute to a better understanding of the practical application of functional connectivity fingerprinting, and its implications for future neuroimaging research.
功能脑指纹识别已成为一种有影响力的工具,可用于量化神经影像学研究中的可靠性,并在健康人群和临床人群中识别认知生物标志物。最近的研究表明,脑指纹存在于特定脑区的时间尺度特异性功能连接中。然而,采集的时间分辨率对指纹识别的影响仍不清楚。在本研究中,我们首次在20名健康志愿者队列中,研究了源自静息态功能磁共振成像(rs-fMRI)且具有不同全脑时间分辨率(TR = 0.5、0.7、1、2和3秒)的功能指纹识别的可靠性。我们的研究结果表明,在固定的TR内,不同时间分辨率下的受试者可识别性均成功,在TR为0.5和3秒时观察到最高的可识别性(TR(秒)/可识别性(%):0.5/64;0.7/47;1/44;2/44;3/56)。我们根据生理噪声混叠的特定协议效应讨论了这一观察结果。我们进一步表明,无论TR如何,联合脑区对受试者可识别性的贡献更大(平均组内相关系数最高的功能连接:在皮层下网络内[SUB;组内相关系数= 0.0387],在默认模式网络内[DMN;组内相关系数= 0.0058];在DMN和躯体运动[SM]网络之间[组内相关系数= 0.0013];在腹侧注意网络[VA]和DMN之间[组内相关系数= 0.0008];在VA和SM之间[组内相关系数= 0.0007]),而在整合来自不同TR的数据时,感觉运动区域变得更具影响力(平均组内相关系数最高的功能连接:在额顶网络内[组内相关系数= 0.382],在背侧注意网络内[DA;组内相关系数= 0.373];在SUB内[组内相关系数= 0.367];在视觉网络[VIS]和DA之间[组内相关系数= 0.362];在VIS内[组内相关系数= 0.358])。我们得出结论,源自rs-fMRI的功能连接指纹识别在多中心研究中具有巨大潜力,这些研究也采用了具有不同时间分辨率的协议。然而,考虑功能磁共振成像信号在数据样本之间受试者可识别性方面的采样率差异仍然至关重要,以便提高全脑和特定功能网络结果的可靠性和可推广性。这些发现有助于更好地理解功能连接指纹识别的实际应用及其对未来神经影像学研究的意义。