Department of Agroecology, Faculty of Technical Sciences, Aarhus Universitygrid.7048.b, Slagelse, Denmark.
Microbiol Spectr. 2022 Aug 31;10(4):e0122622. doi: 10.1128/spectrum.01226-22. Epub 2022 Jun 29.
While the plant host metabolome drives distinct enrichment of detrimental and beneficial members of the microbiome, the mechanistic interomics relationships remain poorly understood. Here, we studied microbiome and metabolome profiles of two Arabidopsis thaliana accessions after Fusarium oxysporum f.sp. (FOM) inoculation, (Ler-0) being susceptible and Col-0 being resistant against FOM. By using bacterial and fungal amplicon sequencing and targeted metabolite analysis, we observed highly dynamic microbiome and metabolome profiles across FOM host progression, while being markedly different between FOM-inoculated and noninoculated Col-0 and Ler-0. Co-occurrence network analysis revealed more robust microbial networks in the resistant Col-0 compared to Ler-0 during FOM infection. Correlation analysis revealed distinct metabolite-OTU correlations in Ler-0 compared with Col-0 which could possibly be explained by missense variants of the 3 and 2 genes in Ler-0. Remarkably, we observed positive correlations in Ler-0 between most of the analyzed metabolites and the bacterial phyla Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, and Verrucomicrobia, and negative correlations with Actinobacteria, Firmicutes, and Chloroflexi. The glucosinolates 4-methyoxyglucobrassicin, glucoerucin and indole-3 carbinol, but also phenolic compounds were strongly correlating with the relative abundances of indicator and hub OTUs and thus could be active in structuring the root-associated microbiome. Our results highlight interactive effects of host plant defense and root-associated microbiota on Fusarium infection and progression. Our findings provide significant insights into plant interomic dynamics during pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control. Plant health and fitness are determined by plant-microbe interactions which are guided by host-synthesized metabolites. To understand the orchestration of this interaction, we analyzed the distinct interomic dynamics in resistant and susceptible ecotypes across different time points after infection with Fusarium oxysporum (FOM). Our results revealed distinct microbial profiles and network resilience during FOM infection in the resistant Col-0 compared with the susceptible Ler-0 and further pinpointed specific microbe-metabolite associations in the Arabidopsis microbiome. These findings provide significant insights into plant interomics dynamics that are likely affecting fungal pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control.
虽然植物宿主的代谢组学驱动了微生物组中有害和有益成员的明显富集,但其中的机制互作关系仍知之甚少。在这里,我们研究了接种尖孢镰刀菌(FOM)后两个拟南芥品系(Ler-0 易感和 Col-0 抗 FOM)的微生物组和代谢组谱。通过使用细菌和真菌扩增子测序和靶向代谢物分析,我们观察到在 FOM 宿主进展过程中微生物组和代谢组谱高度动态,而在接种和未接种 FOM 的 Col-0 和 Ler-0 之间则有明显差异。共现网络分析显示,在 FOM 感染过程中,抗性 Col-0 中的微生物网络更加稳健。相关性分析显示,在 Ler-0 中与 Col-0 相比,代谢物与 OTU 的相关性明显不同,这可能是由 Ler-0 中 3 和 2 个基因的错义变体解释的。值得注意的是,我们观察到 Ler-0 中大多数分析代谢物与变形菌门、拟杆菌门、浮霉菌门、酸杆菌门和疣微菌门之间存在正相关,而与放线菌门、厚壁菌门和绿弯菌门之间存在负相关。萝卜硫素 4-甲氧基葡萄糖硫苷、葡萄糖异硫氰酸酯和吲哚-3-甲醇以及酚类化合物与指示和枢纽 OTU 的相对丰度强烈相关,因此可能在构建根相关微生物组中起作用。我们的结果强调了宿主植物防御和根相关微生物群在 FOM 感染和进展中的相互作用。我们的研究结果为植物在病原体入侵过程中的互作动力学提供了重要的见解,并可能有助于未来利用微生物组来控制植物病害。植物的健康和适应性取决于植物与微生物的相互作用,这些相互作用由宿主合成的代谢物指导。为了理解这种相互作用的协调,我们分析了接种 FOM 后不同时间点抗性和易感生态型之间的不同互作动力学。我们的结果显示,在抗性 Col-0 中,与易感 Ler-0 相比,在 FOM 感染过程中存在明显不同的微生物谱和网络弹性,并进一步确定了拟南芥微生物组中特定的微生物-代谢物关联。这些发现为影响真菌病原体入侵的植物互作动力学提供了重要的见解,并可能有助于未来利用微生物组来控制植物病害。