Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China.
J Math Biol. 2022 Jun 29;85(1):1. doi: 10.1007/s00285-022-01772-w.
An intraguild predation model with intraguild predator diffusion is proposed and studied in this work. It is shown that the local system can have four boundary equilibria and at most two interior equilibria. The interior equilibria may exist even when the system is not uniformly persistent. When only intraguild predator diffusion is incorporated into our three-species model, the resulting model is a partially degenerate reaction-diffusion system. For this partially degenerate system, we show that the solution semiflow is bounded dissipative and the positive orbits of bounded sets are bounded. We also demonstrate that intraguild predator diffusion can lead to the occurrence of spatially nonhomogeneous oscillations and spatiotemporal chaos. Further, we show that intraguild predator diffusion can induce transitions between spatially homogeneous oscillations, spatially nonhomogeneous oscillations and chaos.
这项工作提出并研究了一个具有种内捕食者扩散的种内捕食模型。结果表明,局部系统可能有四个边值平衡点,最多有两个内平衡点。即使系统不是一致持续的,内平衡点也可能存在。当仅将种内捕食者扩散纳入我们的三物种模型时,所得模型是一个部分退化的反应扩散系统。对于这个部分退化的系统,我们证明了解半流是有界耗散的,并且有界集的正轨道是有界的。我们还表明,种内捕食者扩散会导致空间非均匀振荡和时空混沌的发生。此外,我们还表明,种内捕食者扩散可以引起空间均匀振荡、空间非均匀振荡和混沌之间的转变。