Liu Genfeng, Hou Zhongsheng
IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):1735-1749. doi: 10.1109/TNNLS.2022.3185080. Epub 2024 Feb 5.
This article presents an adaptive iterative learning fault-tolerant control algorithm for state constrained nonlinear systems with randomly varying iteration lengths subjected to actuator faults. First, the modified parameters updating laws are designed through a new defined tracking error to handle the randomly varying iteration lengths. Second, the radial basis function neural network method is used to deal with the time-iteration-dependent unknown nonlinearity, and a barrier Lyapunov function is given to cope with the state constraint. Finally, a new barrier composite energy function is used to achieve the tracking error convergence of the presented control algorithm along the iteration axis with the state constraint and then followed with the extension to the high-order case. A simulation for a single-link manipulator is given to illustrate the effectiveness of the theoretical studies.
本文提出了一种适用于具有随机变化迭代长度且受执行器故障影响的状态约束非线性系统的自适应迭代学习容错控制算法。首先,通过新定义的跟踪误差设计修改后的参数更新律,以处理随机变化的迭代长度。其次,采用径向基函数神经网络方法处理与时间迭代相关的未知非线性,并给出障碍Lyapunov函数来处理状态约束。最后,使用一种新的障碍复合能量函数,在有状态约束的情况下,使所提出的控制算法沿迭代轴实现跟踪误差收敛,然后将其扩展到高阶情况。给出了单连杆机械手的仿真结果,以说明理论研究的有效性。