Suppr超能文献

基于改进复合能量函数分析的具有迭代变化试验长度的多输入多输出非线性系统的迭代学习控制

Iterative Learning Control for MIMO Nonlinear Systems With Iteration-Varying Trial Lengths Using Modified Composite Energy Function Analysis.

作者信息

Jin Xu

出版信息

IEEE Trans Cybern. 2021 Dec;51(12):6080-6090. doi: 10.1109/TCYB.2020.2966625. Epub 2021 Dec 22.

Abstract

Most works dealing with trajectory tracking problems in the iterative learning control (ILC) literature assume an iteration domain that has identical trial lengths. This fundamental assumption may not always hold in practical applications. To address iteration-varying trial lengths, a new structure of ILC laws has been presented in this article, based on the newly proposed modified composite energy function (mCEF) analysis. The proposed approach is a feedback control scheme that utilizes tracking errors in the current iteration, so that it can deal with iteration-varying system uncertainties. It is also a unified framework such that the traditional ILC problems with identical trial lengths are shown to be a special case of the more general problem considered in this article. Multi-input-multi-output (MIMO) nonlinear systems are considered, which can be subject to parametric system uncertainties and an unknown control input gain matrix function. We show that in the closed loop analysis, the proposed control scheme can guarantee asymptotic convergence on the full-state tracking error over the iteration domain, in the sense of the L norm, with T being the trial length of the k th iteration. In the end, a simulation example is shown to illustrate the efficacy of the proposed ILC algorithm.

摘要

迭代学习控制(ILC)文献中处理轨迹跟踪问题的大多数研究都假设迭代域中的试验长度相同。这一基本假设在实际应用中可能并不总是成立。为了解决试验长度随迭代变化的问题,本文基于新提出的修正复合能量函数(mCEF)分析,提出了一种新的ILC律结构。所提出的方法是一种反馈控制方案,它利用当前迭代中的跟踪误差,从而能够处理随迭代变化的系统不确定性。它也是一个统一的框架,使得具有相同试验长度的传统ILC问题被证明是本文所考虑的更一般问题的特殊情况。考虑了多输入多输出(MIMO)非线性系统,该系统可能存在参数系统不确定性和未知控制输入增益矩阵函数。我们表明,在闭环分析中,所提出的控制方案能够在迭代域上保证全状态跟踪误差在L范数意义下渐近收敛,其中T为第k次迭代的试验长度。最后,给出了一个仿真示例来说明所提出的ILC算法的有效性。

相似文献

1
Iterative Learning Control for MIMO Nonlinear Systems With Iteration-Varying Trial Lengths Using Modified Composite Energy Function Analysis.
IEEE Trans Cybern. 2021 Dec;51(12):6080-6090. doi: 10.1109/TCYB.2020.2966625. Epub 2021 Dec 22.
2
Fault Tolerant Nonrepetitive Trajectory Tracking for MIMO Output Constrained Nonlinear Systems Using Iterative Learning Control.
IEEE Trans Cybern. 2019 Aug;49(8):3180-3190. doi: 10.1109/TCYB.2018.2842783. Epub 2018 Jul 3.
3
Iterative Learning Control of Constrained Systems With Varying Trial Lengths Under Alignment Condition.
IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):6670-6676. doi: 10.1109/TNNLS.2021.3135504. Epub 2023 Sep 1.
4
Adaptive Learning Control for Nonlinear Systems With Randomly Varying Iteration Lengths.
IEEE Trans Neural Netw Learn Syst. 2019 Apr;30(4):1119-1132. doi: 10.1109/TNNLS.2018.2861216. Epub 2018 Aug 21.
5
Adaptive Iterative Learning Fault-Tolerant Control for State Constrained Nonlinear Systems With Randomly Varying Iteration Lengths.
IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):1735-1749. doi: 10.1109/TNNLS.2022.3185080. Epub 2024 Feb 5.
7
Deterministic Convergence for Learning Control Systems Over Iteration-Dependent Tracking Intervals.
IEEE Trans Neural Netw Learn Syst. 2018 Aug;29(8):3885-3892. doi: 10.1109/TNNLS.2017.2734843. Epub 2017 Aug 29.
8
A Data-Driven ILC Framework for a Class of Nonlinear Discrete-Time Systems.
IEEE Trans Cybern. 2022 Jul;52(7):6143-6157. doi: 10.1109/TCYB.2020.3029596. Epub 2022 Jul 4.
9
Convergence Analysis of Robust Iterative Learning Control Against Nonrepetitive Uncertainties: System Equivalence Transformation.
IEEE Trans Neural Netw Learn Syst. 2021 Sep;32(9):3867-3879. doi: 10.1109/TNNLS.2020.3016057. Epub 2021 Aug 31.
10
Echo State Network-Based Backstepping Adaptive Iterative Learning Control for Strict-Feedback Systems: An Error-Tracking Approach.
IEEE Trans Cybern. 2020 Jul;50(7):3009-3022. doi: 10.1109/TCYB.2019.2931877. Epub 2019 Aug 16.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验