Suppr超能文献

氮掺杂石墨烯上电催化氧还原反应的构型敏感性

Configuration Sensitivity of Electrocatalytic Oxygen Reduction Reaction on Nitrogen-Doped Graphene.

作者信息

Zhang Yifan, Fu Hongquan, He Changchun, Zhang Hai, Li Yuhang, Yang Guangxing, Cao Yonghai, Wang Hongjuan, Peng Feng, Yang Xiaobao, Yu Hao

机构信息

School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510641, China.

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nan-chong 637000, China.

出版信息

J Phys Chem Lett. 2022 Jul 7;13(26):6187-6193. doi: 10.1021/acs.jpclett.2c01645. Epub 2022 Jun 29.

Abstract

As one of the most promising nonprecious metal catalysts for the oxygen reduction reaction (ORR), the structure of the active site on nitrogen-doped carbon materials is still under debate. Here, we report that the sensitivity of the ORR on the local configuration of multiple nitrogen dopants may be overlooked. Combining global structure searching with density functional theory calculations, we established the structure-activity relationship for 19 and 298 possible configurations of graphitic nitrogen-doped graphene with N content of 2 and 3%, respectively. It was revealed that the stability cannot be a screener to determine the major contributor to the activity. 77.5% of current density is contributed by the active configuration with 4.59% population on the graphene containing 3% nitrogen. It unambiguously demonstrates the configuration sensitivity of N-doped graphene for ORR and opens a new window to identifying the optimal structure of N-doped carbons for various applications.

摘要

作为氧还原反应(ORR)最具前景的非贵金属催化剂之一,氮掺杂碳材料上活性位点的结构仍存在争议。在此,我们报告ORR对多个氮掺杂剂局部构型的敏感性可能被忽视。结合全局结构搜索和密度泛函理论计算,我们分别建立了氮含量为2%和3%的石墨型氮掺杂石墨烯19种和298种可能构型的结构-活性关系。结果表明,稳定性不能作为确定活性主要贡献者的筛选标准。在含3%氮的石墨烯上,占比4.59%的活性构型贡献了77.5%的电流密度。这明确证明了氮掺杂石墨烯对ORR的构型敏感性,并为确定用于各种应用的氮掺杂碳的最佳结构打开了一扇新窗口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验