Bellini Valerio, Rusponi Stefano, Kolorenč Jindřich, Mahatha Sanjoy K, Valbuena Miguel Angel, Persichetti Luca, Pivetta Marina, Sorokin Boris V, Merk Darius, Reynaud Sébastien, Sblendorio Dante, Stepanow Sebastian, Nistor Corneliu, Gargiani Pierluigi, Betto Davide, Mugarza Aitor, Gambardella Pietro, Brune Harald, Carbone Carlo, Barla Alessandro
S3-Istituto di Nanoscienze-CNR, Via Campi 213/A, I-41125 Modena, Italy.
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland.
ACS Nano. 2022 Jul 26;16(7):11182-11193. doi: 10.1021/acsnano.2c04048. Epub 2022 Jun 30.
We report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy. We attribute these properties to Dy atoms occupying hollow adsorption sites on the TiO-terminated surface. Conversely, Ho atoms adsorbed on the same surface show paramagnetic behavior down to 2.5 K. With the help of atomic multiplet simulations and first-principles calculations, we establish that Dy populates also the top-O and bridge sites on the coexisting SrO-terminated surface. A simple magnetization relaxation model predicts these two sites to have an even longer magnetization lifetime than the hollow site. Moreover, the adsorption of Dy on the insulating SrTiO crystal leads, regardless of the surface termination, to the formation of a spin-polarized two-dimensional electron gas of Ti 3d character, together with an antiferromagnetic Dy-Ti coupling. Our findings support the feasibility of tuning the magnetic properties of the rare-earth atoms by acting on the substrate electronic gas with electric fields.
我们报道了吸附在SrTiO(001)表面的Dy原子的磁性。X射线磁性圆二色性揭示了在2.5K下,Dy磁化强度在约800s的时间尺度上缓慢弛豫,这异常地与易平面磁各向异性相关。我们将这些性质归因于Dy原子占据了TiO端接表面的中空吸附位点。相反,吸附在同一表面的Ho原子在低至2.5K时表现出顺磁行为。借助原子多重态模拟和第一性原理计算,我们确定Dy也占据了共存的SrO端接表面上的顶O和桥接位点。一个简单的磁化弛豫模型预测这两个位点的磁化寿命比中空位点更长。此外,无论表面端接情况如何,Dy在绝缘的SrTiO晶体上的吸附都会导致形成具有Ti 3d特征的自旋极化二维电子气,以及反铁磁Dy-Ti耦合。我们的研究结果支持了通过电场作用于衬底电子气来调节稀土原子磁性的可行性。