Division of Public Administration, Center for Research and Teaching in Economics (CIDE), Aguascalientes, Aguascalientes, Mexico.
Department of Epidemiology and Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Med Decis Making. 2023 Jan;43(1):3-20. doi: 10.1177/0272989X221103163. Epub 2022 Jun 30.
Decision models can combine information from different sources to simulate the long-term consequences of alternative strategies in the presence of uncertainty. A cohort state-transition model (cSTM) is a decision model commonly used in medical decision making to simulate the transitions of a hypothetical cohort among various health states over time. This tutorial focuses on time-independent cSTM, in which transition probabilities among health states remain constant over time. We implement time-independent cSTM in R, an open-source mathematical and statistical programming language. We illustrate time-independent cSTMs using a previously published decision model, calculate costs and effectiveness outcomes, and conduct a cost-effectiveness analysis of multiple strategies, including a probabilistic sensitivity analysis. We provide open-source code in R to facilitate wider adoption. In a second, more advanced tutorial, we illustrate time-dependent cSTMs.
决策模型可以结合来自不同来源的信息,在存在不确定性的情况下模拟替代策略的长期后果。队列状态转移模型(cSTM)是一种常用于医疗决策中的决策模型,用于模拟假设队列在不同健康状态之间随时间的转移。本教程侧重于时间独立的 cSTM,其中健康状态之间的转移概率随时间保持不变。我们在 R 中实现了时间独立的 cSTM,R 是一种开源的数学和统计编程语言。我们使用之前发表的决策模型来说明时间独立的 cSTM,计算成本和效果结果,并对包括概率敏感性分析在内的多种策略进行成本效益分析。我们提供了 R 中的开源代码,以促进更广泛的应用。在第二个更高级的教程中,我们说明了时间依赖的 cSTM。