Suppr超能文献

软件采用人工智能衍生算法分析疑似急性脑卒中患者的 CT 脑扫描:系统评价和成本效益分析。

Software with artificial intelligence-derived algorithms for analysing CT brain scans in people with a suspected acute stroke: a systematic review and cost-effectiveness analysis.

机构信息

Kleijnen Systematic Reviews (KSR) Ltd, York, UK.

Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands.

出版信息

Health Technol Assess. 2024 Mar;28(11):1-204. doi: 10.3310/RDPA1487.

Abstract

BACKGROUND

Artificial intelligence-derived software technologies have been developed that are intended to facilitate the review of computed tomography brain scans in patients with suspected stroke.

OBJECTIVES

To evaluate the clinical and cost-effectiveness of using artificial intelligence-derived software to support review of computed tomography brain scans in acute stroke in the National Health Service setting.

METHODS

Twenty-five databases were searched to July 2021. The review process included measures to minimise error and bias. Results were summarised by research question, artificial intelligence-derived software technology and study type. The health economic analysis focused on the addition of artificial intelligence-derived software-assisted review of computed tomography angiography brain scans for guiding mechanical thrombectomy treatment decisions for people with an ischaemic stroke. The de novo model (developed in R Shiny, R Foundation for Statistical Computing, Vienna, Austria) consisted of a decision tree (short-term) and a state transition model (long-term) to calculate the mean expected costs and quality-adjusted life-years for people with ischaemic stroke and suspected large-vessel occlusion comparing artificial intelligence-derived software-assisted review to usual care.

RESULTS

A total of 22 studies (30 publications) were included in the review; 18/22 studies concerned artificial intelligence-derived software for the interpretation of computed tomography angiography to detect large-vessel occlusion. No study evaluated an artificial intelligence-derived software technology used as specified in the inclusion criteria for this assessment. For artificial intelligence-derived software technology alone, sensitivity and specificity estimates for proximal anterior circulation large-vessel occlusion were 95.4% (95% confidence interval 92.7% to 97.1%) and 79.4% (95% confidence interval 75.8% to 82.6%) for Rapid (iSchemaView, Menlo Park, CA, USA) computed tomography angiography, 91.2% (95% confidence interval 77.0% to 97.0%) and 85.0 (95% confidence interval 64.0% to 94.8%) for Viz LVO (Viz.ai, Inc., San Fransisco, VA, USA) large-vessel occlusion, 83.8% (95% confidence interval 77.3% to 88.7%) and 95.7% (95% confidence interval 91.0% to 98.0%) for Brainomix (Brainomix Ltd, Oxford, UK) e-computed tomography angiography and 98.1% (95% confidence interval 94.5% to 99.3%) and 98.2% (95% confidence interval 95.5% to 99.3%) for Avicenna CINA (Avicenna AI, La Ciotat, France) large-vessel occlusion, based on one study each. These studies were not considered appropriate to inform cost-effectiveness modelling but formed the basis by which the accuracy of artificial intelligence plus human reader could be elicited by expert opinion. Probabilistic analyses based on the expert elicitation to inform the sensitivity of the diagnostic pathway indicated that the addition of artificial intelligence to detect large-vessel occlusion is potentially more effective (quality-adjusted life-year gain of 0.003), more costly (increased costs of £8.61) and cost-effective for willingness-to-pay thresholds of £3380 per quality-adjusted life-year and higher.

LIMITATIONS AND CONCLUSIONS

The available evidence is not suitable to determine the clinical effectiveness of using artificial intelligence-derived software to support the review of computed tomography brain scans in acute stroke. The economic analyses did not provide evidence to prefer the artificial intelligence-derived software strategy over current clinical practice. However, results indicated that if the addition of artificial intelligence-derived software-assisted review for guiding mechanical thrombectomy treatment decisions increased the sensitivity of the diagnostic pathway (i.e. reduced the proportion of undetected large-vessel occlusions), this may be considered cost-effective.

FUTURE WORK

Large, preferably multicentre, studies are needed (for all artificial intelligence-derived software technologies) that evaluate these technologies as they would be implemented in clinical practice.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42021269609.

FUNDING

This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR133836) and is published in full in ; Vol. 28, No. 11. See the NIHR Funding and Awards website for further award information.

摘要

背景

已经开发出人工智能衍生软件技术,旨在为疑似中风的患者辅助阅颅脑 CT 扫描。

目的

评估在英国国家医疗服务体系中使用人工智能衍生软件支持急性脑卒中 CT 脑扫描的临床和成本效益。

方法

2021 年 7 月前,检索了 25 个数据库。审查过程包括了最小化错误和偏倚的措施。结果根据研究问题、人工智能衍生软件技术和研究类型进行总结。该健康经济学分析侧重于人工智能衍生软件辅助阅 CT 血管造影脑扫描,以指导机械取栓治疗决策,适用于疑似大血管闭塞的缺血性脑卒中患者。从头开始的模型(在 R Shiny、R Foundation for Statistical Computing、Vienna、Austria 中开发)由决策树(短期)和状态转移模型(长期)组成,用于计算缺血性脑卒中患者和疑似大血管闭塞患者的平均预期成本和质量调整生命年,比较人工智能衍生软件辅助阅片和常规护理。

结果

综述共纳入 22 项研究(30 篇文献);18/22 项研究涉及人工智能衍生软件解读 CT 血管造影以检测大血管闭塞。没有研究评估符合本评估纳入标准的人工智能衍生软件技术。对于人工智能衍生软件技术本身,快速(iSchemaView,Menlo Park,CA,USA)CT 血管造影近端前循环大血管闭塞的灵敏度和特异度估计值分别为 95.4%(95%置信区间 92.7%至 97.1%)和 79.4%(95%置信区间 75.8%至 82.6%),Viz LVO(Viz.ai,Inc.,San Fransisco,VA,USA)大血管闭塞的灵敏度和特异度估计值分别为 91.2%(95%置信区间 77.0%至 97.0%)和 85.0%(95%置信区间 64.0%至 94.8%),Brainomix(Brainomix Ltd,Oxford,UK)e-CT 血管造影的灵敏度和特异度估计值分别为 83.8%(95%置信区间 77.3%至 88.7%)和 95.7%(95%置信区间 91.0%至 98.0%),Avicenna CINA(Avicenna AI,La Ciotat,France)大血管闭塞的灵敏度和特异度估计值分别为 98.1%(95%置信区间 94.5%至 99.3%)和 98.2%(95%置信区间 95.5%至 99.3%),均基于一项研究。这些研究被认为不适合为成本效益建模提供信息,但为通过专家意见得出人工智能加人工读者的准确性提供了基础。基于专家意见的概率分析表明,添加人工智能检测大血管闭塞的可能性更有效(质量调整生命年的增益为 0.003),更昂贵(增加 86.1 英镑的成本),且对愿意支付的阈值为 3380 英镑/QALY 及更高的阈值是成本有效的。

局限性和结论

现有的证据不适合确定使用人工智能衍生软件辅助急性脑卒中 CT 脑扫描的临床效果。经济分析并未提供证据表明人工智能衍生软件策略优于当前的临床实践。然而,结果表明,如果人工智能衍生软件辅助阅片用于指导机械取栓治疗决策的敏感性增加(即减少未检测到大血管闭塞的比例),那么这可能是具有成本效益的。

未来工作

需要进行大型(最好是多中心)研究(针对所有人工智能衍生软件技术),评估这些技术在临床实践中的应用情况。

研究注册

本研究在 PROSPERO CRD42021269609 注册。

资金

该奖项由英国国家卫生与保健研究所(NIHR)综合证据计划(NIHR 奖号:NIHR133836)资助,并在全文中发表;第 28 卷,第 11 期。有关其他奖项信息,请访问 NIHR 资助和奖项网站。

相似文献

本文引用的文献

10
Assistance from Automated ASPECTS Software Improves Reader Performance.自动化 ASPECTS 软件辅助可提高阅读者表现。
J Stroke Cerebrovasc Dis. 2021 Jul;30(7):105829. doi: 10.1016/j.jstrokecerebrovasdis.2021.105829. Epub 2021 May 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验