Walters Lauren N, Wang Emily L, Rondinelli James M
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
J Phys Chem Lett. 2022 Jul 7;13(26):6236-6243. doi: 10.1021/acs.jpclett.2c01173. Epub 2022 Jun 30.
We formulate the maximum driving force (MDF) parameter as a descriptor to capture the thermodynamic stability of aqueous surface scale creation over a range of environmental conditions. We use free energies of formation, Δ's, sourced from high-throughput density functional theory (DFT) calculations and experimental databases to compute the maximum driving force for a range of materials, including oxides and hydroxides of varying compositions. We show how to use the MDF to describe trends in the aqueous corrosion of nickel thin films determined from experimental linear sweep voltammetry data. We also show how to account for subsurface oxidation behavior using depth-dependent effective chemical potentials. We anticipate this approach will increase the overall understanding of oxide formation on chemically complex multielement alloys, where competing oxide phases can form during transient aqueous corrosion.
我们将最大驱动力(MDF)参数定义为一种描述符,用于在一系列环境条件下捕捉水相表面垢层形成的热力学稳定性。我们使用源自高通量密度泛函理论(DFT)计算和实验数据库的生成自由能Δ,来计算包括不同组成的氧化物和氢氧化物在内的一系列材料的最大驱动力。我们展示了如何使用MDF来描述根据实验线性扫描伏安法数据确定的镍薄膜水相腐蚀趋势。我们还展示了如何使用深度依赖的有效化学势来解释亚表面氧化行为。我们预计这种方法将增进对化学复杂的多元素合金上氧化物形成的整体理解,在瞬态水相腐蚀过程中可能会形成相互竞争的氧化物相。