Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA.
Department of Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Ecol Lett. 2022 Aug;25(8):1854-1868. doi: 10.1111/ele.14066. Epub 2022 Jun 30.
Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987-2019) and >900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)-underpinned by climatic variability-act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.
空间同步是种群动态的一个普遍且重要的特征,但人们对这一现象的许多方面还不甚了解。特别是,多个环境驱动因素如何通过 Moran 效应相互作用来决定同步性,以及这些影响如何随空间和时间尺度而变化,这些问题在很大程度上还不清楚。我们使用新的小波统计技术,描述了美国加利福尼亚州 900 多公里的海岸线上 33 年(1987-2019 年)期间广泛分布的海洋基础物种巨藻(Macrocystis pyrifera)种群的同步性,并将同步性与海洋学条件的变化相关联。我们发现,干扰(风暴驱动的海浪)和资源(海水养分)——由气候变异性支撑——在地理和时间尺度上单独作用和相互作用,导致巨藻同步。我们的研究结果表明,理解和预测同步性,以及因此预测种群的区域稳定性,依赖于解析作用于不同时间尺度的多个环境驱动因素的协同和拮抗 Moran 效应。