Suppr超能文献

通过综合分析将风险基因作为急性单核细胞白血病新的分层生物标志物进行优先级排序。

Prioritizing risk genes as novel stratification biomarkers for acute monocytic leukemia by integrative analysis.

作者信息

He Hang, Wang Zhiqin, Yu Hanzhi, Zhang Guorong, Wen Yuchen, Cai Zhigang

机构信息

The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

出版信息

Discov Oncol. 2022 Jun 30;13(1):55. doi: 10.1007/s12672-022-00516-y.

Abstract

Acute myeloid leukemia (AML) is a blood cancer with high heterogeneity and stratified as M0-M7 subtypes in the French-American-British (FAB) diagnosis system. Improved diagnosis with leverage of key molecular inputs will assist precisive medicine. Through deep-analyzing the transcriptomic data and mutations of AML, we report that a modern clustering algorithm, t-distributed Stochastic Neighbor Embedding (t-SNE), successfully demarcates M2, M3 and M5 territories while M4 bias to M5 and M0 & M1 bias to M2, consistent with the traditional FAB classification. Combining with mutation profiles, the results show that top recurrent AML mutations were unbiasedly allocated into M2 and M5 territories, indicating the t-SNE instructed transcriptomic stratification profoundly outperforms mutation profiling in the FAB system. Further functional data mining prioritizes several myeloid-specific genes as potential regulators of AML progression and treatment by Venetoclax, a BCL2 inhibitor. Among them two encode membrane proteins, LILRB4 and LRRC25, which could be utilized as cell surface biomarkers for monocytic AML or for innovative immuno-therapy candidates in future. In summary, our deep functional data-mining analysis warrants several unappreciated immune signaling-encoding genes as novel diagnostic biomarkers and potential therapeutic targets.

摘要

急性髓系白血病(AML)是一种具有高度异质性的血癌,在法美英(FAB)诊断系统中分为M0 - M7亚型。利用关键分子输入改进诊断将有助于精准医学。通过对AML的转录组数据和突变进行深入分析,我们报告一种现代聚类算法,即t分布随机邻域嵌入(t-SNE),成功划分出M2、M3和M5区域,而M4偏向M5,M0和M1偏向M2,这与传统FAB分类一致。结合突变谱,结果显示AML中最常见的复发性突变被无偏地分配到M2和M5区域,表明t-SNE指导的转录组分层在FAB系统中明显优于突变谱分析。进一步的功能数据挖掘将几个髓系特异性基因列为AML进展和使用BCL2抑制剂维奈托克治疗的潜在调节因子。其中两个编码膜蛋白,即LILRB4和LRRC25,它们可在未来用作单核细胞AML的细胞表面生物标志物或创新免疫治疗候选物。总之,我们深入的功能数据挖掘分析证实了几个未被重视的免疫信号编码基因作为新型诊断生物标志物和潜在治疗靶点的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/604c/9247126/e2ebbeaed1ff/12672_2022_516_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验