Suppr超能文献

复合肉牛群体的遗传结构。

Genetic architecture of a composite beef cattle population.

机构信息

USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301, USA.

USDA Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.

出版信息

J Anim Sci. 2022 Sep 1;100(9). doi: 10.1093/jas/skac230.

Abstract

Composite breeds are widely used in the beef industry. Composites allow producers to combine desirable traits from the progenitor breeds and simplify herd management, without repeated crossbreeding and maintenance of purebreds. In this study, genomic information was used to evaluate the genetic composition and characteristics of a three-breed beef cattle composite. This composite population referred to as Composite Gene Combination (CGC) consisted of 50% Red Angus, 25% Charolais, and 25% Tarentaise. A total of 248 animals were used in this study: CGC (n = 79), Red Angus (n = 61), Charolais (n = 79), and Tarentaise (n = 29). All animals were genotyped with 777k HD panel. Principal component and ADMIXTURE analyses were carried out to evaluate the genetic structure of CGC animals. The ADMIXTURE revealed the proportion of Tarentaise increased to approximately 57%, whereas Charolais decreased to approximately 5% and Red Angus decreased to 38% across generations. To evaluate these changes in the genomic composition across different breeds and in CGC across generations, runs of homozygosity (ROH) were conducted. This analysis showed Red Angus to have the highest total length of ROH segments per animal with a mean of 349.92 Mb and lowest in CGC with a mean of 141.10 Mb. Furthermore, it showed the formation of new haplotypes in CGC around the sixth generation. Selection signatures were evaluated through Fst and HapFlk analyses. Several selection sweeps in CGC were identified especially in chromosomes 5 and 14 which have previously been reported to be associated with coat color and growth traits. The study supports our previous findings that progenitor combinations are not stable over generations and that either direct or natural selection plays a role in modifying the progenitor proportions. Furthermore, the results showed that Tarentaise contributed useful attributes to the composite in a cool semi-arid environment and suggests a re-exploration of this breed's role may be warranted.

摘要

复合品种在牛肉行业中被广泛应用。复合品种可以让生产者将祖代品种的优良性状结合起来,并简化牛群管理,而无需重复杂交和维持纯种。在这项研究中,我们利用基因组信息来评估一个三品种肉牛复合品种的遗传组成和特征。这个复合种群被称为复合基因组合(CGC),由 50%的红安格斯牛、25%的夏洛莱牛和 25%的塔郎坦牛组成。这项研究共使用了 248 头动物:CGC(n=79)、红安格斯牛(n=61)、夏洛莱牛(n=79)和塔郎坦牛(n=29)。所有动物均采用 777k HD 面板进行基因分型。进行主成分和 ADMIXTURE 分析,以评估 CGC 动物的遗传结构。ADMIXTURE 结果表明,塔郎坦牛的比例增加到了约 57%,而夏洛莱牛减少到了约 5%,红安格斯牛减少到了 38%。为了评估不同品种和不同世代的 CGC 基因组组成的这些变化,进行了纯合片段(ROH)分析。该分析表明,红安格斯牛的每个动物的 ROH 片段总长度最高,平均为 349.92Mb,而 CGC 的平均长度最低,为 141.10Mb。此外,该分析还表明在第六代时 CGC 形成了新的单倍型。通过 Fst 和 HapFlk 分析评估了选择信号。在 CGC 中鉴定出了几个选择清扫,特别是在先前报道与毛色和生长性状相关的染色体 5 和 14 上。该研究支持我们之前的发现,即祖代组合在几代之后并不稳定,直接或自然选择在改变祖代比例方面发挥了作用。此外,结果表明,塔郎坦牛在凉爽的半干旱环境中为复合品种贡献了有用的性状,并提示可能需要重新探索该品种的作用。

相似文献

1
Genetic architecture of a composite beef cattle population.
J Anim Sci. 2022 Sep 1;100(9). doi: 10.1093/jas/skac230.
2
Genomic Breed Composition of Selection Signatures in Brangus Beef Cattle.
Front Genet. 2020 Jul 10;11:710. doi: 10.3389/fgene.2020.00710. eCollection 2020.
4
Detection of selection signatures in dairy and beef cattle using high-density genomic information.
Genet Sel Evol. 2015 Jun 19;47(1):49. doi: 10.1186/s12711-015-0127-3.
5
Comparison of molecular breeding values based on within- and across-breed training in beef cattle.
Genet Sel Evol. 2013 Aug 16;45(1):30. doi: 10.1186/1297-9686-45-30.
6
Genetic diversity and population history of eight Italian beef cattle breeds using measures of autozygosity.
PLoS One. 2021 Oct 25;16(10):e0248087. doi: 10.1371/journal.pone.0248087. eCollection 2021.
8
Exploring genomic inbreeding and selection signatures in a commercial Brangus herd through functional annotation.
J Appl Genet. 2024 May;65(2):383-394. doi: 10.1007/s13353-024-00859-y. Epub 2024 Mar 25.
9
Deciphering signature of selection affecting beef quality traits in Angus cattle.
Genes Genomics. 2018 Jan;40(1):63-75. doi: 10.1007/s13258-017-0610-z. Epub 2017 Sep 30.

引用本文的文献

1
Genomic diversity of Cameroonian Gudali and Gudali-cross cattle.
Sci Rep. 2025 Apr 29;15(1):15066. doi: 10.1038/s41598-025-99799-8.
4
Selective signatures in composite MONTANA TROPICAL beef cattle reveal potential genomic regions for tropical adaptation.
PLoS One. 2024 Apr 25;19(4):e0301937. doi: 10.1371/journal.pone.0301937. eCollection 2024.
6
A gene bank's collection of genetic diversity among minor chicken breeds.
Poult Sci. 2023 Aug;102(8):102827. doi: 10.1016/j.psj.2023.102827. Epub 2023 Jun 1.
7
Genome-wide association study for carcass weight in pasture-finished beef cattle in Hawai'i.
Front Genet. 2023 May 9;14:1168150. doi: 10.3389/fgene.2023.1168150. eCollection 2023.

本文引用的文献

1
Genomic Breed Composition of Selection Signatures in Brangus Beef Cattle.
Front Genet. 2020 Jul 10;11:710. doi: 10.3389/fgene.2020.00710. eCollection 2020.
4
Dynamics of genomic architecture during composite breed development in cattle.
Anim Genet. 2020 Mar;51(2):224-234. doi: 10.1111/age.12907. Epub 2020 Jan 21.
6
Identification of loci associated with conception rate in primiparous Holstein cows.
BMC Genomics. 2019 Nov 12;20(1):840. doi: 10.1186/s12864-019-6203-2.
8
Validation of 46 loci associated with female fertility traits in cattle.
BMC Genomics. 2019 Jul 12;20(1):576. doi: 10.1186/s12864-019-5935-3.
10
A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle.
Front Genet. 2019 May 14;10:412. doi: 10.3389/fgene.2019.00412. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验