Suppr超能文献

一种用于空气动力学和水动力学实验的适应性飞鱼机器人模型。

An Adaptable Flying Fish Robotic Model for Aero- and Hydrodynamic Experimentation.

作者信息

Saro-Cortes Valeria, Cui Yuhe, Dufficy Tierney, Boctor Arsanious, Flammang Brooke E, Wissa Aimy W

机构信息

Department of Mechanical and Aerospace Engineering, Princeton University, 26 Olden Street, 08544, New Jersey, USA.

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green St, 61801, Illinois, USA.

出版信息

Integr Comp Biol. 2022 Jun 30. doi: 10.1093/icb/icac101.

Abstract

Flying fishes (family Exocoetidae) are known for achieving multi-modal locomotion through air and water. Previous work on understanding this animal's aerodynamic and hydrodynamic nature has been based on observations, numerical simulations, or experiments on preserved dead fish, and has focused primarily on flying pectoral fins. The first half of this paper details the design and validation of a modular flying fish inspired robotic model organism (RMO). The second half delves into a parametric aerodynamic study of flying fish pelvic fins, which to date have not been studied in-depth. Using wind tunnel experiments at a Reynolds number of 30,000, we investigated the effect of the pelvic fin geometric parameters on aerodynamic efficiency and longitudinal stability. The pelvic fin parameters investigated in this study include the pelvic fin pitch angle and its location along the body. Results show that the aerodynamic efficiency is maximized for pelvic fins located directly behind the pectoral fins and is higher for more positive pitch angles. In contrast, pitching stability is neither achievable for positive pitching angles nor pelvic fins located directly below the pectoral fin. Thus, there is a clear a trade-off between stability and lift generation, and an optimal pelvic fin configuration depends on the flying fish locomotion stage, be it gliding, taxiing, or taking off. The results garnered from the RMO experiments are insightful for understanding the physics principles governing flying fish locomotion and designing flying fish inspired aerial-aquatic vehicles.

摘要

飞鱼(飞鱼科)以在空气和水中实现多模态运动而闻名。以往关于理解这种动物空气动力学和水动力学特性的研究,都是基于对保存的死鱼进行观察、数值模拟或实验,并且主要集中在飞行的胸鳍上。本文的前半部分详细介绍了一种受飞鱼启发的模块化机器人模型生物(RMO)的设计与验证。后半部分深入探讨了飞鱼腹鳍的参数化空气动力学研究,迄今为止,腹鳍尚未得到深入研究。我们在雷诺数为30000的风洞中进行实验,研究了腹鳍几何参数对空气动力学效率和纵向稳定性的影响。本研究中研究的腹鳍参数包括腹鳍俯仰角及其沿身体的位置。结果表明,位于胸鳍正后方的腹鳍空气动力学效率最高,且俯仰角越正效率越高。相比之下,正俯仰角的腹鳍以及位于胸鳍正下方的腹鳍都无法实现俯仰稳定性。因此,在稳定性和升力产生之间存在明显的权衡,最佳的腹鳍配置取决于飞鱼的运动阶段,无论是滑翔、滑行还是起飞。从RMO实验中获得的结果对于理解飞鱼运动的物理原理以及设计受飞鱼启发的空水两栖飞行器具有深刻的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验