Suppr超能文献

从时空人口学角度看健康的社会决定因素和慢性病在决定人群对 COVID-19 易感性中的作用。

A Spatio-Demographic Perspective on the Role of Social Determinants of Health and Chronic Disease in Determining a Population's Vulnerability to COVID-19.

机构信息

The Center for Human Dynamics in the Mobile Age, San Diego State University, San Diego, California.

Department of Geography, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182-4493. Email:

出版信息

Prev Chronic Dis. 2022 Jun 30;19:E38. doi: 10.5888/pcd19.210414.

Abstract

INTRODUCTION

During the COVID-19 pandemic, health and social inequities placed racial and ethnic minority groups at increased risk of severe illness. Our objective was to investigate this health disparity by analyzing the relationship between potential social determinants of health (SDOH), COVID-19, and chronic disease in the spatial context of San Diego County, California.

METHODS

We identified potential SDOH from a Pearson correlation analysis between socioeconomic variables and COVID-19 case rates during 5 pandemic stages, from March 31, 2020, to April 3, 2021. We used ridge regression to model chronic disease hospitalization and death rates by using the selected socioeconomic variables. Through the lens of COVID-19 and chronic disease, we identified vulnerable communities by using spatial methods, including Global Moran I spatial autocorrelation, local bivariate relationship analysis, and geographically weighted regression.

RESULTS

In the Pearson correlation analysis, we identified 26 socioeconomic variables as potential SDOH because of their significance (P ≤ .05) in relation to COVID-19 case rates. Of the analyzed chronic disease rates, ridge regression most accurately modeled rates of diabetes age-adjusted death (R = 0.903) and age-adjusted hospitalization for hypertensive disease (hypertension, hypertensive heart disease, hypertensive chronic kidney disease, and hypertensive encephalopathy) (R = 0.952). COVID-19 and chronic disease rates exhibited positive spatial autocorrelation (0.304≤I≤0.561, 3.092≤Z≤6.548, 0.001≤P≤ .002), thereby justifying spatial models to highlight communities that are vulnerable to COVID-19.

CONCLUSION

Novel spatial analysis methods reveal relationships between SDOH, COVID-19, and chronic disease that are intuitive and easily communicated to public health decision makers and practitioners. Observable disparity patterns between urban and rural areas and between affluent and low-income communities establish the need for spatially differentiated COVID-19 response approaches to achieve health equity.

摘要

简介

在 COVID-19 大流行期间,健康和社会不平等使少数族裔面临更高的重病风险。我们的目标是通过分析加利福尼亚州圣地亚哥县 COVID-19 与慢性病的空间背景下潜在的健康决定因素(SDOH)之间的关系来研究这种健康差异。

方法

我们从 2020 年 3 月 31 日至 2021 年 4 月 3 日的 COVID-19 大流行的 5 个阶段中,通过社会经济变量与 COVID-19 病例率之间的皮尔逊相关性分析来确定潜在的 SDOH。我们使用脊回归模型来模拟选定的社会经济变量的慢性疾病住院和死亡率。通过 COVID-19 和慢性病的视角,我们使用空间方法,包括全局 Moran I 空间自相关、局部二元关系分析和地理加权回归,来确定脆弱社区。

结果

在皮尔逊相关性分析中,我们确定了 26 个社会经济变量,因为它们与 COVID-19 病例率相关(P≤0.05),因此被认为是潜在的 SDOH。在所分析的慢性疾病率中,脊回归最准确地模拟了糖尿病年龄调整死亡率(R=0.903)和高血压疾病(高血压、高血压性心脏病、高血压性慢性肾脏病和高血压性脑病)的年龄调整住院率(R=0.952)。COVID-19 和慢性疾病率表现出正的空间自相关(0.304≤I≤0.561、3.092≤Z≤6.548、0.001≤P≤0.002),从而证明了空间模型可以突出易受 COVID-19 影响的社区。

结论

新的空间分析方法揭示了 SDOH、COVID-19 和慢性病之间的关系,这些关系直观且易于与公共卫生决策者和从业者沟通。城乡之间以及富裕社区和低收入社区之间的明显差异模式表明,需要采取空间差异化的 COVID-19 应对方法来实现健康公平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验