基于两阶段空间信息融合卷积神经网络的高效腋窝淋巴结检测。
Efficient Axillary Lymph Node Detection Via Two-stage Spatial-information-fusion-based CNN.
机构信息
Institute of Systems Science and Technology, School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China.
Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
出版信息
Comput Methods Programs Biomed. 2022 Aug;223:106953. doi: 10.1016/j.cmpb.2022.106953. Epub 2022 Jun 14.
BACKGROUND AND OBJECTIVE
Preoperative imaging diagnosis of axillary lymph node (ALN) metastasis is particularly important for breast cancer patients. This paper focuses on developing non-invasive and automatic schemes for accurate localization and classification (metastasis prediction) of ALN via contrast-enhanced computed tomography (CECT) image and deep learning models.
METHODS
Based on a two-stage strategy, a novel detection neural network is proposed, where the convolutional block attention module is utilized to extract spacial information and the bottleneck feature fusion module is designed for feature fusion in different scales.
RESULTS
Owing to the two embedded modules, the proposed convolutional neural network (CNN) model outperforms Faster R-CNN, YOLOv3, and EfficientDet in the sense that the achieved mAP is 0.454, higher than 0.247, 0.335, and 0.329, respectively. In particular, considering the function of classification only, the proposed model reaches the best performance on most indices (accuracy of 0.968, positive predictive value of 0.972, negative predictive value of 0.966, specificity of 0.983), compared with the methods that have been frequently adopted to predict ALN. In addition, the proposed CNN model has the function of locating ALN, which is lacking in existing models.
CONCLUSIONS
In this paper, a supervised deep learning method is proposed to detect ALN in CECT images. The positive effect of new added modules are verified, and the benefits of spatial information in ALN detection are confirmed. Further, the two subtasks called localization and classification are evaluated separately, where the proposed model achieves the best performance on most indices. The source code mentioned in this article will be released later.
背景与目的
腋窝淋巴结(ALN)转移的术前影像学诊断对乳腺癌患者尤为重要。本文旨在通过对比增强计算机断层扫描(CECT)图像和深度学习模型,开发用于准确定位和分类(转移预测)ALN 的非侵入性和自动方案。
方法
基于两阶段策略,提出了一种新的检测神经网络,其中利用卷积块注意力模块提取空间信息,设计瓶颈特征融合模块用于不同尺度的特征融合。
结果
由于嵌入了两个模块,所提出的卷积神经网络(CNN)模型在 mAP 方面优于 Faster R-CNN、YOLOv3 和 EfficientDet,分别为 0.454、0.247、0.335 和 0.329。特别是,仅考虑分类功能,所提出的模型在大多数指标上(准确率为 0.968、阳性预测值为 0.972、阴性预测值为 0.966、特异性为 0.983)达到了最佳性能,与常用于预测 ALN 的方法相比。此外,所提出的 CNN 模型具有定位 ALN 的功能,而现有模型缺乏此功能。
结论
本文提出了一种基于监督学习的深度学习方法,用于检测 CECT 图像中的 ALN。验证了新添加模块的积极效果,证实了空间信息在 ALN 检测中的作用。此外,分别评估了定位和分类两个子任务,所提出的模型在大多数指标上都取得了最佳性能。本文提到的源代码将稍后发布。