School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China.
J Environ Manage. 2022 Sep 15;318:115595. doi: 10.1016/j.jenvman.2022.115595. Epub 2022 Jun 28.
Intimate coupling of photocatalysis and biodegradation (ICPB) is considered a promising approach for the degradation of recalcitrant organic compounds. In this work, using Trichoderma with benzene degradation ability coupled with activated sludge as a biological source and sugarcane bagasse cellulose composite as a carrier, the ICPB system showed excellent degradation and mineralization of trichlorobenzene under visible light induction. The biofilm inside the ICPB carrier can degrade and mineralize the photocatalytic products. ICPB increased the degradation efficiency of 1,2,3-TCB and 1,3,5-TCB by 12.43% and 4.67%, respectively, compared to photocatalysis alone. The biofilms inside the ICPB carriers can mineralize photocatalytic products, which increases the mineralization efficiency by 18.74%. According to the analysis of intermediates, the degradation of 1,2,3-TCB in this coupled system involved stepwise dechlorination and ring opening. The biofilm in ICPB carrier evolved to be enriched in Cutaneotrichosporon, Trichoderma, Apiotrichum, Zoogloea, Dechloromonas, Flavihumibacter and Cupriavidus, which are known for biodegradable aromatic hydrocarbon and halogenate. Novel microbial seeds supplemented with Trichoderma-based ICPB seem to provide a new potential strategy for effective degradation and mineralization of TCB.
光催化与生物降解的紧密偶联(ICPB)被认为是一种很有前途的方法,可用于降解难降解的有机化合物。在这项工作中,使用具有苯降解能力的木霉与活性污泥作为生物源,并将甘蔗渣纤维素复合材料作为载体,ICPB 系统在可见光诱导下表现出对三氯苯的优异降解和矿化性能。ICPB 载体内部的生物膜可以降解和矿化光催化产物。与单独的光催化相比,ICPB 分别将 1,2,3-TCB 和 1,3,5-TCB 的降解效率提高了 12.43%和 4.67%。ICPB 载体内部的生物膜可以矿化光催化产物,矿化效率提高了 18.74%。根据中间产物的分析,在该偶联体系中,1,2,3-TCB 的降解涉及逐步脱氯和开环。ICPB 载体中的生物膜演变为富含 Cutaneotrichosporon、木霉、Apiotrichum、Zoogloea、Dechloromonas、Flavihumibacter 和 Cupriavidus,这些菌已知可生物降解芳香烃和卤代物。新型微生物种子补充了基于木霉的 ICPB,似乎为 TCB 的有效降解和矿化提供了一种新的潜在策略。