Suppr超能文献

巴西里奥布朗库市大气细颗粒物与呼吸住院的相关性:展示低成本空气质量传感器在流行病学研究中的潜力。

Association between PM and respiratory hospitalization in Rio Branco, Brazil: Demonstrating the potential of low-cost air quality sensor for epidemiologic research.

机构信息

Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, Gainesville, FL, United States.

General-Coordination of Occupational Health Department of Environmental Health, Occupational Health, and Surveillance of Public Health Emergencies Ministry of Health of Brazil, SRTVN - Quadra 701, Via W5 Norte Lote D, Edifício PO 700 - 6 andar, Cep 70723-040, Brasília, DF, Brazil.

出版信息

Environ Res. 2022 Nov;214(Pt 1):113738. doi: 10.1016/j.envres.2022.113738. Epub 2022 Jun 27.

Abstract

BACKGROUND

There is currently a scarcity of air pollution epidemiologic data from low- and middle-income countries (LMICs) due to the lack of air quality monitoring in these countries. Additionally, there is limited capacity to assess the health effects of wildfire smoke events in wildfire-prone regions like Brazil's Amazon Basin. Emerging low-cost air quality sensors may have the potential to address these gaps.

OBJECTIVES

We investigated the potential of PurpleAir PM2.5 sensors for conducting air pollution epidemiologic research leveraging the United States Environmental Protection Agency's United States-wide correction formula for ambient PM.

METHODS

We obtained raw (uncorrected) PM concentration and humidity data from a PurpleAir sensor in Rio Branco, Brazil, between 2018 and 2019. Humidity measurements from the PurpleAir sensor were used to correct the PM concentrations. We established the relationship between ambient PM (corrected and uncorrected) and daily all-cause respiratory hospitalization in Rio Branco, Brazil, using generalized additive models (GAM) and distributed lag non-linear models (DLNM). We used linear regression to assess the relationship between daily PM concentrations and wildfire reports in Rio Branco during the wildfire seasons of 2018 and 2019.

RESULTS

We observed increases in daily respiratory hospitalizations of 5.4% (95%CI: 0.8%, 10.1%) for a 2-day lag and 5.8% (1.5%, 10.2%) for 3-day lag, per 10 μg/m PM (corrected values). The effect estimates were attenuated when the uncorrected PM data was used. The number of reported wildfires explained 10% of daily PM2.5 concentrations during the wildfire season.

DISCUSSION

Exposure-response relationships estimated using corrected low-cost air quality sensor data were comparable with relationships estimated using a validated air quality modeling approach. This suggests that correcting low-cost PM sensor data may mitigate bias attenuation in air pollution epidemiologic studies. Low-cost sensor PM data could also predict the air quality impacts of wildfires in Brazil's Amazon Basin.

摘要

背景

由于这些国家缺乏空气质量监测,因此目前来自中低收入国家(LMICs)的空气污染流行病学数据稀缺。此外,在像巴西亚马逊盆地这样的野火频发地区,评估野火烟雾事件对健康的影响的能力有限。新兴的低成本空气质量传感器可能有潜力弥补这些空白。

目的

我们研究了 PurpleAir PM2.5 传感器在利用美国环境保护署针对美国的大气 PM 整体修正公式进行空气污染流行病学研究方面的潜力。

方法

我们获得了 2018 年至 2019 年期间巴西里奥布兰科的 PurpleAir 传感器的原始(未修正)PM 浓度和湿度数据。PurpleAir 传感器的湿度测量值用于修正 PM 浓度。我们使用广义加性模型(GAM)和分布式滞后非线性模型(DLNM)建立了里奥布兰科的大气 PM(修正和未修正)与每日全因呼吸道住院之间的关系。我们使用线性回归来评估 2018 年和 2019 年野火季节期间里奥布兰科的每日 PM 浓度与野火报告之间的关系。

结果

我们观察到每日呼吸道住院的增加与 2 天滞后的 5.4%(95%CI:0.8%,10.1%)和 3 天滞后的 5.8%(1.5%,10.2%)相关,每 10μg/m PM(修正值)。当使用未修正的 PM 数据时,效应估计值会减弱。报告的野火数量解释了野火季节期间每日 PM2.5 浓度的 10%。

讨论

使用修正后的低成本空气质量传感器数据估算的暴露-反应关系与使用经过验证的空气质量建模方法估算的关系相当。这表明,修正低成本 PM 传感器数据可能会减轻空气污染流行病学研究中的偏差衰减。低成本传感器 PM 数据还可以预测巴西亚马逊盆地野火对空气质量的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验