文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单细胞和批量转录组测序确定了两种上皮肿瘤细胞状态,并完善了结直肠癌的共识分子分类。

Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer.

机构信息

Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.

出版信息

Nat Genet. 2022 Jul;54(7):963-975. doi: 10.1038/s41588-022-01100-4. Epub 2022 Jun 30.


DOI:10.1038/s41588-022-01100-4
PMID:35773407
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9279158/
Abstract

The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined 'IMF' classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).

摘要

结直肠癌的共识分子亚型(CMS)分类基于批量转录组学。潜在的上皮细胞多样性仍不清楚。我们分析了来自 63 名患者的 373,058 个单细胞转录组,重点关注 49,155 个上皮细胞。我们根据不同的基因表达、DNA 拷贝数和基因调控网络,确定了恶性细胞普遍存在的遗传和转录组二分法。我们在来自 3,614 名患者的批量转录组中重现了这些亚型。两个内在亚型,iCMS2 和 iCMS3,细化了 CMS。iCMS3 包括微卫星不稳定(MSI-H)癌症和三分之一的微卫星稳定(MSS)肿瘤。iCMS3 MSS 癌症在转录上与 MSI-H 癌症比与其他 MSS 癌症更相似。CMS4 癌症要么有 iCMS2,要么有 iCMS3 上皮;后者预后最差。我们定义了结直肠癌的内在上皮轴,并提出了一个经过改进的“IMF”分类,有五个亚型,包括内在上皮亚型(I)、微卫星不稳定性状态(M)和纤维化(F)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/ad92f77ae690/41588_2022_1100_Fig18_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/97a4923e5150/41588_2022_1100_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/819d8f30b4a1/41588_2022_1100_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/d1231a0af2b0/41588_2022_1100_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/7083daffd429/41588_2022_1100_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/b9cc64162ffd/41588_2022_1100_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/b5cd569a873f/41588_2022_1100_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/94e21269aada/41588_2022_1100_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/ecd05cd1232a/41588_2022_1100_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/14b2824d9a04/41588_2022_1100_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/5088b70369a0/41588_2022_1100_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/46d0c1345c94/41588_2022_1100_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/3e040aaafab2/41588_2022_1100_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/0c0b1ecbed78/41588_2022_1100_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/dc1d05d9cc8c/41588_2022_1100_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/539dab68e500/41588_2022_1100_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/d2f81bba0232/41588_2022_1100_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/35b4f1a0a41f/41588_2022_1100_Fig17_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/ad92f77ae690/41588_2022_1100_Fig18_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/97a4923e5150/41588_2022_1100_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/819d8f30b4a1/41588_2022_1100_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/d1231a0af2b0/41588_2022_1100_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/7083daffd429/41588_2022_1100_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/b9cc64162ffd/41588_2022_1100_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/b5cd569a873f/41588_2022_1100_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/94e21269aada/41588_2022_1100_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/ecd05cd1232a/41588_2022_1100_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/14b2824d9a04/41588_2022_1100_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/5088b70369a0/41588_2022_1100_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/46d0c1345c94/41588_2022_1100_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/3e040aaafab2/41588_2022_1100_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/0c0b1ecbed78/41588_2022_1100_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/dc1d05d9cc8c/41588_2022_1100_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/539dab68e500/41588_2022_1100_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/d2f81bba0232/41588_2022_1100_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/35b4f1a0a41f/41588_2022_1100_Fig17_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf20/9279158/ad92f77ae690/41588_2022_1100_Fig18_ESM.jpg

相似文献

[1]
Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer.

Nat Genet. 2022-7

[2]
Refining colorectal cancer classification and clinical stratification through a single-cell atlas.

Genome Biol. 2022-5-11

[3]
Gene expression profiles in genome instability-based classes of colorectal cancer.

BMC Cancer. 2018-12-18

[4]
Chr20q Amplification Defines a Distinct Molecular Subtype of Microsatellite Stable Colorectal Cancer.

Cancer Res. 2021-4-15

[5]
Combined Microsatellite Instability and Elevated Microsatellite Alterations at Selected Tetranucleotide Repeats (EMAST) Might Be a More Promising Immune Biomarker in Colorectal Cancer.

Oncologist. 2019-7-10

[6]
RNA-Seq-Based Molecular Classification Analyses in Colorectal Cancer and Synchronous Adenoma.

Cancers (Basel). 2023-10-4

[7]
Molecular pathological classification of colorectal cancer.

Virchows Arch. 2016-8

[8]
Gene expression profiles of CMS2-epithelial/canonical colorectal cancers are largely driven by DNA copy number gains.

Oncogene. 2019-7-15

[9]
Genomic and transcriptomic characterization of heterogeneous immune subgroups of microsatellite instability-high colorectal cancers.

J Immunother Cancer. 2021-12

[10]
CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer.

Ann Oncol. 2018-5-1

引用本文的文献

[1]
-Mediated Suppression of WNT Signaling Through Transcriptional Control of in Colorectal Cancer Cells.

Int J Mol Sci. 2025-8-15

[2]
Proteomic profiling identifies a stromal TGF-β1/podoplanin axis as a driver of colorectal cancer progression.

J Exp Clin Cancer Res. 2025-8-22

[3]
Genomic and the tumor microenvironment heterogeneity in multifocal hepatocellular carcinoma.

Hepatology. 2025-9-1

[4]
GALNT7 Stratifies dMMR/MSI Colorectal Cancer into Distinct Molecular Subsets Associated with Prognosis and PD-L1 Expression.

Cancer Res Commun. 2025-9-1

[5]
Oroxin A suppresses colorectal tumor growth by regulating the TRIM24-mediated ferroptosis and TSPO pathway.

iScience. 2025-7-24

[6]
DNA Methylation Concurrence, Independent of DNA Methylation Ratios, Is Associated with Chromatin Accessibility and 3D Genome Architecture.

Int J Mol Sci. 2025-7-25

[7]
Neoadjuvant Treatment for Locally Advanced Rectal Cancer: Current Status and Future Directions.

Cancers (Basel). 2025-7-31

[8]
Multiplex analysis of colorectal cancer tissue describes the composition, cell biology and spatial effects of cell-in-cell events and identifies a T cell-dependent prognostic signature.

bioRxiv. 2025-7-18

[9]
Integrative single-cell transcriptomic analysis deciphers heterogeneous characteristics of gastrointestinal tract cancer.

Clin Transl Med. 2025-8

[10]
Exploring the role of neutrophil extracellular traps in colorectal cancer: Insights from single-cell sequencing.

World J Gastrointest Oncol. 2025-7-15

本文引用的文献

[1]
Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps.

Cell. 2021-12-22

[2]
DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data.

Nat Commun. 2021-10-6

[3]
Spatially organized multicellular immune hubs in human colorectal cancer.

Cell. 2021-9-2

[4]
Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis.

Nat Commun. 2021-6-8

[5]
NOTUM from Apc-mutant cells biases clonal competition to initiate cancer.

Nature. 2021-6

[6]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

[7]
Chr20q Amplification Defines a Distinct Molecular Subtype of Microsatellite Stable Colorectal Cancer.

Cancer Res. 2021-4-15

[8]
Pan-Cancer Analysis of Ligand-Receptor Cross-talk in the Tumor Microenvironment.

Cancer Res. 2021-4-1

[9]
Mutations and mechanisms of WNT pathway tumour suppressors in cancer.

Nat Rev Cancer. 2021-1

[10]
Predicting cell-to-cell communication networks using NATMI.

Nat Commun. 2020-10-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索