Suppr超能文献

GALNT7将错配修复缺陷/微卫星高度不稳定的结直肠癌分层为与预后和程序性死亡配体1表达相关的不同分子亚群。

GALNT7 Stratifies dMMR/MSI Colorectal Cancer into Distinct Molecular Subsets Associated with Prognosis and PD-L1 Expression.

作者信息

Suzuki Hiroya, Okayama Hirokazu, Nakajima Shotaro, Saito Katsuharu, Kanoda Ryo, Maruyama Yuya, Matsuishi Akira, Matsumoto Takuro, Ito Misato, Chida Shun, Sakamoto Wataru, Saito Motonobu, Saze Zenichiro, Momma Tomoyuki, Mimura Kosaku, Kono Koji

机构信息

Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.

Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima, Japan.

出版信息

Cancer Res Commun. 2025 Sep 1;5(9):1530-1540. doi: 10.1158/2767-9764.CRC-25-0270.

Abstract

UNLABELLED

Colorectal cancer with deficient mismatch repair (dMMR)/microsatellite instability (MSI) constitutes a distinct clinicopathologic and immunologic subtype, characterized by high sensitivity to immune checkpoint inhibitors. However, prognosis and therapeutic response vary considerably among dMMR/MSI colorectal cancers, underscoring the need for molecular markers to refine patient stratification. In this study, we systematically investigated cancer cell-intrinsic expression profiles of 188 glycosyltransferase genes by integrating single-cell, bulk, and cell line RNA sequencing datasets. This approach identified five glycosyltransferases, including GALNT7, expression of which differed consistently according to MSI status. The clinical and prognostic relevance of these glycosyltransferases was further analyzed across large-scale transcriptomic, proteomic, and IHC cohorts, comprising 662 dMMR/MSI and 3,483 proficient mismatch-repair (pMMR)/microsatellite-stable (MSS) colorectal cancers. A five-gene glycosyltransferase signature effectively distinguished MSI from MSS colorectal cancers across 18 datasets. Among the five genes, GALNT7 expression was robustly associated with favorable prognosis in four independent transcriptomic and IHC cohorts of dMMR/MSI colorectal cancers while showing little or no prognostic impact in pMMR/MSS colorectal cancers. Notably, GALNT7 expression was inversely correlated with PD-L1 expression at both the mRNA and protein levels in multiple datasets exclusively within dMMR/MSI colorectal cancers, but not in pMMR/MSS CRCs. Functional assays and lectin microarray analysis using MSI colorectal cancer cell lines revealed that GALNT7 knockdown enhanced IFNγ-induced PD-L1 expression without altering cell-surface glycosylation. In conclusion, GALNT7 expression stratified dMMR/MSI colorectal cancers into distinct subsets with differential tumor cell PD-L1 expression and diverse survival outcomes, highlighting its potential as a prognostic biomarker to guide treatment strategies.

SIGNIFICANCE

We identified glycosyltransferases with altered expression depending on MMR/MSI status. Our findings indicate the existence of two molecularly defined subtypes within dMMR/MSI colorectal cancers based on GALNT7 expression, characterized by differential tumor cell PD-L1 levels and distinct survival outcomes.

摘要

未标记

错配修复缺陷(dMMR)/微卫星不稳定(MSI)的结直肠癌构成一种独特的临床病理和免疫亚型,其特征是对免疫检查点抑制剂高度敏感。然而,dMMR/MSI结直肠癌的预后和治疗反应差异很大,这突出表明需要分子标志物来优化患者分层。在本研究中,我们通过整合单细胞、批量和细胞系RNA测序数据集,系统地研究了188个糖基转移酶基因的癌细胞内在表达谱。这种方法鉴定出了五种糖基转移酶,包括GALNT7,其表达根据MSI状态始终存在差异。在包含662例dMMR/MSI和3483例错配修复功能正常(pMMR)/微卫星稳定(MSS)结直肠癌的大规模转录组、蛋白质组和免疫组化队列中,进一步分析了这些糖基转移酶的临床和预后相关性。一个五基因糖基转移酶特征在18个数据集中有效地将MSI结直肠癌与MSS结直肠癌区分开来。在这五个基因中,GALNT7的表达在dMMR/MSI结直肠癌的四个独立转录组和免疫组化队列中与良好预后密切相关,而在pMMR/MSS结直肠癌中几乎没有预后影响。值得注意的是,在多个数据集中,仅在dMMR/MSI结直肠癌中,GALNT7表达在mRNA和蛋白质水平上均与PD-L1表达呈负相关,而在pMMR/MSS结直肠癌中则不然。使用MSI结直肠癌细胞系进行的功能试验和凝集素微阵列分析表明,GALNT7敲低增强了IFNγ诱导的PD-L1表达,而不改变细胞表面糖基化。总之,GALNT7表达将dMMR/MSI结直肠癌分为具有不同肿瘤细胞PD-L1表达和不同生存结果的不同亚组,突出了其作为指导治疗策略的预后生物标志物的潜力。

意义

我们鉴定出了表达根据MMR/MSI状态而改变的糖基转移酶。我们的研究结果表明,基于GALNT7表达,dMMR/MSI结直肠癌中存在两种分子定义的亚型,其特征是肿瘤细胞PD-L1水平不同和生存结果不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验