College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
Stud Health Technol Inform. 2022 Jun 29;295:201-204. doi: 10.3233/SHTI220697.
The recent advancements in artificial intelligence (AI) and the Internet of Medical Things (IoMT) have opened new horizons for healthcare technology. AI models, however, rely on large data that must be shared with the centralized entity developing the model. Data sharing leads to privacy preservation and legal issues. Federated Learning (FL) enables the training of AI models on distributed data. Hence, a large amount of IoMT data can be put into use without the need for sharing the data. This paper presents the opportunities offered by FL for privacy preservation in IoMT data. With FL, the complicated dynamics and agreements for data-sharing can be avoided. Furthermore, it describes the use cases of FL in facilitating collaborative efforts to develop AI for COVID-19 diagnosis. Since handling data from multiple sites poses its challenges, the paper also highlights the critical challenges associated with FL developments for IoMT data. Addressing these challenges will lead to gaining maximum benefit from data-driven AI technologies in IoMT.
人工智能 (AI) 和医疗物联网 (IoMT) 的最新进展为医疗保健技术开辟了新的前景。然而,AI 模型依赖于必须与开发模型的集中实体共享的大量数据。数据共享会导致隐私保护和法律问题。联邦学习 (FL) 可实现对分布式数据的 AI 模型训练。因此,无需共享数据即可使用大量 IoMT 数据。本文介绍了 FL 在保护 IoMT 数据隐私方面提供的机会。使用 FL 可以避免复杂的数据共享动态和协议。此外,它还描述了 FL 在促进 COVID-19 诊断人工智能协作开发方面的用例。由于处理来自多个站点的数据存在挑战,因此本文还重点介绍了与 IoMT 数据的 FL 开发相关的关键挑战。解决这些挑战将有助于从 IoMT 中的数据驱动 AI 技术中获得最大收益。