IEEE J Biomed Health Inform. 2023 Feb;27(2):778-789. doi: 10.1109/JBHI.2022.3181823. Epub 2023 Feb 3.
Recent advances in electronic devices and communication infrastructure have revolutionized the traditional healthcare system into a smart healthcare system by using internet of medical things (IoMT) devices. However, due to the centralized training approach of artificial intelligence (AI), mobile and wearable IoMT devices raise privacy issues concerning the information communicated between hospitals and end-users. The information conveyed by the IoMT devices is highly confidential and can be exposed to adversaries. In this regard, federated learning (FL), a distributive AI paradigm, has opened up new opportunities for privacy preservation in IoMT without accessing the confidential data of the participants. Further, FL provides privacy to end-users as only gradients are shared during training. For these specific properties of FL, in this paper, we present privacy-related issues in IoMT. Afterwards, we present the role of FL in IoMT networks for privacy preservation and introduce some advanced FL architectures by incorporating deep reinforcement learning (DRL), digital twin, and generative adversarial networks (GANs) for detecting privacy threats. Moreover, we present some practical opportunities for FL in IoMT. In the end, we conclude this survey by discussing open research issues and challenges while using FL in future smart healthcare systems.
近年来,电子设备和通信基础设施的进步使医疗物联网 (IoMT) 设备将传统医疗系统转变为智能医疗系统。然而,由于人工智能 (AI) 的集中式培训方法,移动和可穿戴式 IoMT 设备引发了涉及医院和最终用户之间通信信息的隐私问题。IoMT 设备传达的信息高度机密,可能会被攻击者暴露。在这方面,联邦学习 (FL),一种分布式 AI 范例,为保护 IoMT 中的隐私提供了新的机会,而无需访问参与者的机密数据。此外,FL 为最终用户提供隐私,因为在训练过程中仅共享梯度。鉴于 FL 的这些特定属性,在本文中,我们介绍了 IoMT 中的隐私相关问题。然后,我们介绍了 FL 在 IoMT 网络中用于保护隐私的作用,并通过引入深度强化学习 (DRL)、数字孪生和生成对抗网络 (GAN) 来介绍一些先进的 FL 架构,以检测隐私威胁。此外,我们还介绍了 FL 在 IoMT 中的一些实际应用机会。最后,我们通过讨论在未来智能医疗系统中使用 FL 时的一些开放研究问题和挑战来结束本调查。