Engineering DivisionNew York University Abu Dhabi Abu Dhabi United Arab Emirates.
Mechanical and Aerospace EngineeringNew York University New York NY 11201 USA.
IEEE J Transl Eng Health Med. 2022 Jun 8;10:2500410. doi: 10.1109/JTEHM.2022.3180937. eCollection 2022.
Minimally invasive surgery (MIS) incorporates surgical instruments through small incisions to perform procedures. Despite the potential advantages of MIS, the lack of tactile sensation and haptic feedback due to the indirect contact between the surgeon's hands and the tissues restricts sensing the strength of applied forces or obtaining information about the biomechanical properties of tissues under operation. Accordingly, there is a crucial need for intelligent systems to provide an artificial tactile sensation to MIS surgeons and trainees. This study evaluates the potential of our proposed real-time grasping forces and deformation angles feedback to assist surgeons in detecting tissues' stiffness. A prototype was developed using a standard laparoscopic grasper integrated with a force-sensitive resistor on one grasping jaw and a tunneling magneto-resistor on the handle's joint to measure the grasping force and the jaws' opening angle, respectively. The sensors' data are analyzed using a microcontroller, and the output is displayed on a small screen and saved to a log file. This integrated system was evaluated by running multiple grasp-release tests using both elastomeric and biological tissue samples, in which the average force-to-angle-change ratio precisely resembled the stiffness of grasped samples. Another feature is the detection of hidden lumps by palpation, looking for sudden variations in the measured stiffness. In experiments, the real-time grasping feedback helped enhance the surgeons' sorting accuracy of testing models based on their stiffness. The developed tool demonstrated a great potential for low-cost tactile sensing in MIS procedures, with room for future improvements. Significance: The proposed method can contribute to MIS by assessing stiffness, detecting hidden lumps, preventing excessive forces during operation, and reducing the learning curve for trainees.
微创手术 (MIS) 通过小切口引入手术器械来进行操作。尽管 MIS 具有潜在的优势,但由于外科医生的手与组织之间的间接接触,缺乏触觉感知和力反馈,限制了对施力强度的感知或获取手术过程中组织生物力学特性的信息。因此,迫切需要智能系统为 MIS 外科医生和学员提供人工触觉。本研究评估了我们提出的实时抓取力和变形角度反馈的潜力,以帮助外科医生检测组织的硬度。使用标准的腹腔镜抓握器开发了一个原型,该抓握器在一个抓握钳上集成了一个力敏电阻器,在手柄关节上集成了一个隧道磁阻传感器,分别用于测量抓取力和钳口的张开角度。使用微控制器对传感器数据进行分析,输出显示在小屏幕上,并保存到日志文件中。通过使用弹性体和生物组织样本进行多次抓握-释放测试来评估这个集成系统,平均力-角度变化比精确地反映了被抓样本的硬度。另一个特点是通过触诊检测隐藏的肿块,寻找测量硬度时的突然变化。在实验中,实时抓取反馈有助于提高外科医生根据测试模型硬度进行分类的准确性。所开发的工具在 MIS 手术中的低成本触觉传感方面具有很大的潜力,未来还有改进的空间。意义:该方法可以通过评估硬度、检测隐藏的肿块、防止手术过程中过度用力以及减少学员的学习曲线,为 MIS 做出贡献。
IEEE J Transl Eng Health Med. 2022
Annu Int Conf IEEE Eng Med Biol Soc. 2021-11
Int J Comput Assist Radiol Surg. 2017-8
Comput Assist Surg (Abingdon). 2019-8-29
Int J Med Robot. 2013-5-2
Minim Invasive Ther Allied Technol. 2006
Surg Endosc. 2012-12-12
Annu Int Conf IEEE Eng Med Biol Soc. 2013
IEEE Trans Biomed Eng. 2024-6
Biomed Eng Comput Biol. 2023-11-27
Interdiscip Cardiovasc Thorac Surg. 2023-3-2
Annu Int Conf IEEE Eng Med Biol Soc. 2021-11
Ann Med Surg (Lond). 2021-3-31
Sensors (Basel). 2019-9-12
Sensors (Basel). 2019-7-1
Int J Comput Assist Radiol Surg. 2018-10-4
IEEE Robot Autom Lett. 2017-7