文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用自主研发的智能腹腔镜夹进行微创手术中的僵硬度评估和肿块检测。

Stiffness Assessment and Lump Detection in Minimally Invasive Surgery Using In-House Developed Smart Laparoscopic Forceps.

机构信息

Engineering DivisionNew York University Abu Dhabi Abu Dhabi United Arab Emirates.

Mechanical and Aerospace EngineeringNew York University New York NY 11201 USA.

出版信息

IEEE J Transl Eng Health Med. 2022 Jun 8;10:2500410. doi: 10.1109/JTEHM.2022.3180937. eCollection 2022.


DOI:10.1109/JTEHM.2022.3180937
PMID:35774413
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9216325/
Abstract

Minimally invasive surgery (MIS) incorporates surgical instruments through small incisions to perform procedures. Despite the potential advantages of MIS, the lack of tactile sensation and haptic feedback due to the indirect contact between the surgeon's hands and the tissues restricts sensing the strength of applied forces or obtaining information about the biomechanical properties of tissues under operation. Accordingly, there is a crucial need for intelligent systems to provide an artificial tactile sensation to MIS surgeons and trainees. This study evaluates the potential of our proposed real-time grasping forces and deformation angles feedback to assist surgeons in detecting tissues' stiffness. A prototype was developed using a standard laparoscopic grasper integrated with a force-sensitive resistor on one grasping jaw and a tunneling magneto-resistor on the handle's joint to measure the grasping force and the jaws' opening angle, respectively. The sensors' data are analyzed using a microcontroller, and the output is displayed on a small screen and saved to a log file. This integrated system was evaluated by running multiple grasp-release tests using both elastomeric and biological tissue samples, in which the average force-to-angle-change ratio precisely resembled the stiffness of grasped samples. Another feature is the detection of hidden lumps by palpation, looking for sudden variations in the measured stiffness. In experiments, the real-time grasping feedback helped enhance the surgeons' sorting accuracy of testing models based on their stiffness. The developed tool demonstrated a great potential for low-cost tactile sensing in MIS procedures, with room for future improvements. Significance: The proposed method can contribute to MIS by assessing stiffness, detecting hidden lumps, preventing excessive forces during operation, and reducing the learning curve for trainees.

摘要

微创手术 (MIS) 通过小切口引入手术器械来进行操作。尽管 MIS 具有潜在的优势,但由于外科医生的手与组织之间的间接接触,缺乏触觉感知和力反馈,限制了对施力强度的感知或获取手术过程中组织生物力学特性的信息。因此,迫切需要智能系统为 MIS 外科医生和学员提供人工触觉。本研究评估了我们提出的实时抓取力和变形角度反馈的潜力,以帮助外科医生检测组织的硬度。使用标准的腹腔镜抓握器开发了一个原型,该抓握器在一个抓握钳上集成了一个力敏电阻器,在手柄关节上集成了一个隧道磁阻传感器,分别用于测量抓取力和钳口的张开角度。使用微控制器对传感器数据进行分析,输出显示在小屏幕上,并保存到日志文件中。通过使用弹性体和生物组织样本进行多次抓握-释放测试来评估这个集成系统,平均力-角度变化比精确地反映了被抓样本的硬度。另一个特点是通过触诊检测隐藏的肿块,寻找测量硬度时的突然变化。在实验中,实时抓取反馈有助于提高外科医生根据测试模型硬度进行分类的准确性。所开发的工具在 MIS 手术中的低成本触觉传感方面具有很大的潜力,未来还有改进的空间。意义:该方法可以通过评估硬度、检测隐藏的肿块、防止手术过程中过度用力以及减少学员的学习曲线,为 MIS 做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/5395ce28e426/qasai6-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/c4970f46c08f/qasai1ab-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/ac1862102693/qasai2-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/c69c9eabf5a5/qasai3-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/96a0bd20fa65/qasai4abcd-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/f43ef4fdb8a6/qasai5abc-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/5395ce28e426/qasai6-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/c4970f46c08f/qasai1ab-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/ac1862102693/qasai2-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/c69c9eabf5a5/qasai3-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/96a0bd20fa65/qasai4abcd-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/f43ef4fdb8a6/qasai5abc-3180937.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bf/9216325/5395ce28e426/qasai6-3180937.jpg

相似文献

[1]
Stiffness Assessment and Lump Detection in Minimally Invasive Surgery Using In-House Developed Smart Laparoscopic Forceps.

IEEE J Transl Eng Health Med. 2022

[2]
Smart Laparoscopic Grasper Utilizing Force and Angle Sensors for Stiffness Assessment in Minimally Invasive Surgery.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[3]
Grasper having tactile sensing function using acoustic reflection for laparoscopic surgery.

Int J Comput Assist Radiol Surg. 2017-8

[4]
Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies.

Front Robot AI. 2022-1-7

[5]
Evaluation of laparoscopic forceps jaw contact pressure and distribution using pressure sensitive film.

Comput Assist Surg (Abingdon). 2019-8-29

[6]
An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.

Int J Med Robot. 2013-5-2

[7]
Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.

Surg Endosc. 2016-8

[8]
Artificial tactile sensing in minimally invasive surgery - a new technical approach.

Minim Invasive Ther Allied Technol. 2006

[9]
The role of tactile feedback in grip force during laparoscopic training tasks.

Surg Endosc. 2012-12-12

[10]
A grasping forceps with a triaxial MEMS tactile sensor for quantification of stresses on organs.

Annu Int Conf IEEE Eng Med Biol Soc. 2013

引用本文的文献

[1]
An intelligent grasper to provide real-time force feedback to shorten the learning curve in laparoscopic training.

BMC Med Educ. 2024-2-20

[2]
A Minimally Invasive Robotic Tissue Palpation Device.

IEEE Trans Biomed Eng. 2024-6

[3]
Next-Generation Microfluidics for Biomedical Research and Healthcare Applications.

Biomed Eng Comput Biol. 2023-11-27

[4]
'Now you can see me, now you don't': seeking the invisible lung nodule.

Interdiscip Cardiovasc Thorac Surg. 2023-3-2

本文引用的文献

[1]
Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies.

Front Robot AI. 2022-1-7

[2]
Smart laparoscopic grasper integrated with fiber Bragg grating based tactile sensor for real-time force feedback.

J Biophotonics. 2022-5

[3]
Smart Laparoscopic Grasper Utilizing Force and Angle Sensors for Stiffness Assessment in Minimally Invasive Surgery.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[4]
Tool-tissue forces in surgery: A systematic review.

Ann Med Surg (Lond). 2021-3-31

[5]
Tactile Image Sensors Employing Camera: A Review.

Sensors (Basel). 2019-9-12

[6]
Silicon-Based Sensors for Biomedical Applications: A Review.

Sensors (Basel). 2019-7-1

[7]
Conditions for reliable grip force and jaw angle estimation of da Vinci surgical tools.

Int J Comput Assist Radiol Surg. 2018-10-4

[8]
Haptic Feedback, Force Feedback, and Force-Sensing in Simulation Training for Laparoscopy: A Systematic Overview.

J Surg Educ. 2018-8-4

[9]
Gaussian Process Regression for Sensorless Grip Force Estimation of Cable Driven Elongated Surgical Instruments.

IEEE Robot Autom Lett. 2017-7

[10]
Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring.

Adv Mater. 2017-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索