Suppr超能文献

通过群体内部的自然语言追踪群体身份。

Tracking group identity through natural language within groups.

作者信息

Ashokkumar Ashwini, Pennebaker James W

机构信息

Polarization and Social Change Lab, 450 Jane Stanford Way Building 120, Room 201, Stanford, CA 94305, USA.

Department of Psychology, University of Texas Austin, 108 E. Dean Keeton, Austin, TX 78712-0187, USA.

出版信息

PNAS Nexus. 2022 Jun 24;1(2):pgac022. doi: 10.1093/pnasnexus/pgac022. eCollection 2022 May.

Abstract

To what degree can we determine people's connections with groups through the language they use? In recent years, large archives of behavioral data from social media communities have become available to social scientists, opening the possibility of tracking naturally occurring group identity processes. A feature of most digital groups is that they rely exclusively on the written word. Across 3 studies, we developed and validated a language-based metric of group identity strength and demonstrated its potential in tracking identity processes in online communities. In Studies 1a-1c, 873 people wrote about their connections to various groups (country, college, or religion). A total of 2 language markers of group identity strength were found: high affiliation (more words like ) and low cognitive processing or questioning (fewer words like ). Using these markers, a language-based unquestioning affiliation index was developed and applied to in-class stream-of-consciousness essays of 2,161 college students (Study 2). Greater levels of unquestioning affiliation expressed in language predicted not only self-reported university identity but also students' likelihood of remaining enrolled in college a year later. In Study 3, the index was applied to naturalistic Reddit conversations of 270,784 people in 2 online communities of supporters of the 2016 presidential candidates-Hillary Clinton and Donald Trump. The index predicted how long people would remain in the group (3a) and revealed temporal shifts mirroring members' joining and leaving of groups (3b). Together, the studies highlight the promise of a language-based approach for tracking and studying group identity processes in online groups.

摘要

我们能在多大程度上通过人们使用的语言来确定他们与群体的联系?近年来,社交媒体社区的大量行为数据档案已可供社会科学家使用,这为追踪自然发生的群体认同过程提供了可能性。大多数数字群体的一个特点是它们完全依赖书面文字。在3项研究中,我们开发并验证了一种基于语言的群体认同强度指标,并展示了其在追踪在线社区认同过程中的潜力。在研究1a - 1c中,873人写下了他们与各种群体(国家、大学或宗教)的联系。共发现了2个群体认同强度的语言标记:高度归属感(更多类似 的词汇)和低认知加工或质疑(更少类似 的词汇)。利用这些标记,开发了一种基于语言的不加质疑的归属感指数,并将其应用于2161名大学生的课堂意识流文章(研究2)。语言中表达的更高水平的不加质疑的归属感不仅预测了自我报告的大学认同感,还预测了学生一年后继续就读大学的可能性。在研究3中,该指数应用于2016年总统候选人希拉里·克林顿和唐纳德·特朗普的两个在线支持者社区中270784人的自然主义Reddit对话。该指数预测了人们在群体中停留的时间(3a),并揭示了反映成员加入和离开群体的时间变化(3b)。总之,这些研究突出了基于语言的方法在追踪和研究在线群体中的群体认同过程方面的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd77/9802377/faa73918c694/pgac022fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验