Suppr超能文献

获得专利的人工智能、软件和机器人技术与美国工资变化有何关联?

How Are Patented AI, Software and Robot Technologies Related to Wage Changes in the United States?

作者信息

Fossen Frank M, Samaan Daniel, Sorgner Alina

机构信息

Department of Economics, University of Nevada, Reno, NV, United States.

IZA, Bonn, Germany.

出版信息

Front Artif Intell. 2022 Jun 14;5:869282. doi: 10.3389/frai.2022.869282. eCollection 2022.

Abstract

We analyze the relationships of three different types of patented technologies, namely artificial intelligence, software and industrial robots, with individual-level wage changes in the United States from 2011 to 2021. The aim of the study is to investigate if the availability of AI technologies is associated with increases or decreases in individual workers' wages and how this association compares to previous innovations related to software and industrial robots. Our analysis is based on available indicators extracted from the text of patents to measure the exposure of occupations to these three types of technologies. We combine data on individual wages for the United States with the new technology measures and regress individual annual wage changes on these measures controlling for a variety of other factors. Our results indicate that innovations in software and industrial robots are associated with wage decreases, possibly indicating a large displacement effect of these technologies on human labor. On the contrary, for innovations in AI, we find wage increases, which may indicate that productivity effects and effects coming from the creation of new human tasks are larger than displacement effects of AI. AI exposure is associated with positive wage changes in services, whereas exposure to robots is associated with negative wage changes in manufacturing. The relationship of the AI exposure measure with wage increases has become stronger in 2016-2021 in comparison to the 5 years before. J24, J31, O33.

摘要

我们分析了三种不同类型的专利技术,即人工智能、软件和工业机器人,与2011年至2021年美国个人层面工资变化之间的关系。该研究的目的是调查人工智能技术的可用性是否与个体工人工资的增加或减少相关,以及这种关联与先前与软件和工业机器人相关的创新相比如何。我们的分析基于从专利文本中提取的可用指标,以衡量职业对这三种技术的接触程度。我们将美国个人工资数据与新技术指标相结合,并在控制各种其他因素的情况下,将个人年度工资变化对这些指标进行回归分析。我们的结果表明,软件和工业机器人的创新与工资下降相关,这可能表明这些技术对人类劳动力有很大的替代效应。相反,对于人工智能的创新,我们发现工资增加,这可能表明生产力效应以及新人类任务创造带来的效应大于人工智能的替代效应。人工智能接触与服务业的正工资变化相关,而机器人接触与制造业的负工资变化相关。与之前的5年相比,2016 - 2021年人工智能接触指标与工资增长之间的关系变得更强。J24、J31、O33。

相似文献

1
How Are Patented AI, Software and Robot Technologies Related to Wage Changes in the United States?
Front Artif Intell. 2022 Jun 14;5:869282. doi: 10.3389/frai.2022.869282. eCollection 2022.
2
Artificial Intelligence and Employment: New Cross-Country Evidence.
Front Artif Intell. 2022 May 10;5:832736. doi: 10.3389/frai.2022.832736. eCollection 2022.
3
Transformation to Industrial Artificial Intelligence and Workers' Mental Health: Evidence From China.
Front Public Health. 2022 May 24;10:881827. doi: 10.3389/fpubh.2022.881827. eCollection 2022.
5
Trust Toward Robots and Artificial Intelligence: An Experimental Approach to Human-Technology Interactions Online.
Front Psychol. 2020 Dec 3;11:568256. doi: 10.3389/fpsyg.2020.568256. eCollection 2020.
6
Support for increasing low-wage workers' compensation: The role of fixed-growth mindsets about intelligence.
J Exp Psychol Gen. 2023 Apr;152(4):935-955. doi: 10.1037/xge0001303. Epub 2022 Oct 31.
7
Despair and hope: Is the retail community pharmacy workforce in danger of becoming a monopsony labor market?
J Am Pharm Assoc (2003). 2024 May-Jun;64(3):102039. doi: 10.1016/j.japh.2024.02.012. Epub 2024 Feb 14.

引用本文的文献

1
Impacts of workplace automation on energy poverty: The new challenge of achieving SDG 7 in the context of technological revolution.
Heliyon. 2024 Jan 23;10(3):e25087. doi: 10.1016/j.heliyon.2024.e25087. eCollection 2024 Feb 15.
2
Does artificial intelligence kill employment growth: the missing link of corporate AI posture.
Front Artif Intell. 2023 Nov 17;6:1239466. doi: 10.3389/frai.2023.1239466. eCollection 2023.
3
The AI trilemma: Saving the planet without ruining our jobs.
Front Artif Intell. 2022 Oct 19;5:886561. doi: 10.3389/frai.2022.886561. eCollection 2022.

本文引用的文献

2
What can machine learning do? Workforce implications.
Science. 2017 Dec 22;358(6370):1530-1534. doi: 10.1126/science.aap8062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验