Suppr超能文献

人工智能对发展中国家劳动力市场的影响:一种新方法及老挝和越南城市的实例说明

The impact of artificial intelligence on labor markets in developing countries: a new method with an illustration for Lao PDR and urban Viet Nam.

作者信息

Carbonero Francesco, Davies Jeremy, Ernst Ekkehard, Fossen Frank M, Samaan Daniel, Sorgner Alina

机构信息

University of Turin, Turin, Italy.

East Village Software Consultants, London, UK.

出版信息

J Evol Econ. 2023 Feb 17:1-30. doi: 10.1007/s00191-023-00809-7.

Abstract

AI is transforming labor markets around the world. Existing research has focused on advanced economies but has neglected developing economies. Different impacts of AI on labor markets in different countries arise not only from heterogeneous occupational structures, but also from the fact that occupations vary across countries in their composition of tasks. We propose a new methodology to translate existing measures of AI impacts that were developed for the US to countries at various levels of economic development. Our method assesses semantic similarities between textual descriptions of work activities in the US and workers' skills elicited in surveys for other countries. We implement the approach using the measure of suitability of work activities for machine learning provided by Brynjolfsson et al. (Am Econ Assoc Pap Proc 108:43-47, 2018) for the US and the World Bank's STEP survey for Lao PDR and Viet Nam. Our approach allows characterizing the extent to which workers and occupations in a given country are subject to destructive digitalization, which puts workers at risk of being displaced, in contrast to transformative digitalization, which tends to benefit workers. We find that workers in urban Viet Nam, in comparison to Lao PDR, are more concentrated in occupations affected by AI, which requires them to adapt or puts them at risk of being partially displaced. Our method based on semantic textual similarities using SBERT is advantageous compared to approaches transferring AI impact scores across countries using crosswalks of occupational codes.

摘要

人工智能正在改变全球劳动力市场。现有研究主要集中在发达经济体,而忽视了发展中经济体。人工智能对不同国家劳动力市场的不同影响,不仅源于不同的职业结构,还源于各国职业在任务构成上存在差异这一事实。我们提出了一种新方法,将为美国开发的现有人工智能影响衡量指标应用于不同经济发展水平的国家。我们的方法评估美国工作活动文本描述与其他国家调查中得出的工人技能之间的语义相似度。我们使用布林约尔松等人(《美国经济协会论文集》108:43 - 47,2018年)为美国提供的工作活动对机器学习的适用性衡量指标以及世界银行对老挝和越南的STEP调查来实施该方法。我们的方法能够刻画特定国家的工人和职业受破坏性数字化影响的程度,破坏性数字化会使工人面临被取代的风险,而变革性数字化往往使工人受益。我们发现,与老挝相比,越南城市的工人更集中在受人工智能影响的职业中,这要求他们做出调整或面临部分被取代的风险。与使用职业代码对照表在各国之间传递人工智能影响分数的方法相比,我们基于使用SBERT的语义文本相似度的方法具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5452/9936490/72116765a67c/191_2023_809_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验