Sharma Narendra, Kumari Supriya, Jaiswal Dinesh Kumar, Raghuram Nandula
University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India.
Front Plant Sci. 2022 Jun 14;13:881204. doi: 10.3389/fpls.2022.881204. eCollection 2022.
The genetic basis for nitrogen (N)-response and N use efficiency (NUE) must be found in N-responsive gene expression or protein regulation. Our transcriptomic analysis of nitrate response in two contrasting rice genotypes of ssp. (Nidhi with low NUE and Panvel1 with high NUE) revealed the processes/functions underlying differential N-response/NUE. The microarray analysis of low nitrate response (1.5 mM) relative to normal nitrate control (15 mM) used potted 21-days old whole plants. It revealed 1,327 differentially expressed genes (DEGs) exclusive to Nidhi and 666 exclusive to Panvel1, apart from 70 common DEGs, of which 10 were either oppositely expressed or regulated to different extents. Gene ontology analyses revealed that photosynthetic processes were among the very few processes common to both the genotypes in low N response. Those unique to Nidhi include cell division, nitrogen utilization, cytoskeleton, etc. in low N-response, whereas those unique to Panvel1 include signal transduction, protein import into the nucleus, and mitochondria. This trend of a few common but mostly unique categories was also true for transporters, transcription factors, microRNAs, and post-translational modifications, indicating their differential involvement in Nidhi and Panvel1. Protein-protein interaction networks constructed using DEG-associated experimentally validated interactors revealed subnetworks involved in cytoskeleton organization, cell wall, etc. in Nidhi, whereas in Panvel1, it was chloroplast development. NUE genes were identified by selecting yield-related genes from N-responsive DEGs and their co-localization on NUE-QTLs revealed the differential distribution of NUE-genes between genotypes but on the same chromosomes 1 and 3. Such hotspots are important for NUE breeders.
氮(N)响应和氮利用效率(NUE)的遗传基础必定存在于氮响应基因表达或蛋白质调控之中。我们对两个对比鲜明的水稻基因型(低氮利用效率的Nidhi和高氮利用效率的Panvel1)进行了硝酸盐响应的转录组分析,揭示了不同氮响应/氮利用效率背后的过程/功能。相对于正常硝酸盐对照(15 mM),对低硝酸盐响应(1.5 mM)进行的微阵列分析使用了盆栽21日龄的整株植物。结果显示,除了70个共同的差异表达基因(DEG)外,Nidhi特有的差异表达基因有1327个,Panvel1特有的有666个,其中10个基因的表达或调控方向相反或程度不同。基因本体分析表明,光合作用过程是低氮响应中两种基因型共有的极少数过程之一。低氮响应中Nidhi特有的过程包括细胞分裂、氮利用、细胞骨架等,而Panvel1特有的过程包括信号转导、蛋白质导入细胞核和线粒体。对于转运蛋白、转录因子、微小RNA和翻译后修饰而言,这种少数共同但大多独特类别的趋势同样存在,表明它们在Nidhi和Panvel1中的参与情况不同。使用与差异表达基因相关的经实验验证的相互作用分子构建的蛋白质-蛋白质相互作用网络,揭示了Nidhi中涉及细胞骨架组织、细胞壁等的子网络,而在Panvel1中则是叶绿体发育。通过从氮响应差异表达基因中选择与产量相关的基因来鉴定氮利用效率基因,它们在氮利用效率数量性状基因座上的共定位揭示了氮利用效率基因在不同基因型之间但在相同的1号和3号染色体上的差异分布。这些热点对氮利用效率育种者来说很重要。