Suppr超能文献

器官尺度的短期转录组分析揭示了与氮利用效率不同的番茄基因型中低氮响应相关的候选基因。

Short-term transcriptomic analysis at organ scale reveals candidate genes involved in low N responses in NUE-contrasting tomato genotypes.

作者信息

Sunseri Francesco, Aci Meriem Miyassa, Mauceri Antonio, Caldiero Ciro, Puccio Guglielmo, Mercati Francesco, Abenavoli Maria Rosa

机构信息

Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy.

National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Palermo, Italy.

出版信息

Front Plant Sci. 2023 Mar 3;14:1125378. doi: 10.3389/fpls.2023.1125378. eCollection 2023.

Abstract

BACKGROUND

Understanding the complex regulatory network underlying plant nitrogen (N) responses associated with high Nitrogen Use Efficiency (NUE) is one of the main challenges for sustainable cropping systems. Nitrate (NO ), acting as both an N source and a signal molecule, provokes very fast transcriptome reprogramming, allowing plants to adapt to its availability. These changes are genotype- and tissue-specific; thus, the comparison between contrasting genotypes is crucial to uncovering high NUE mechanisms.

METHODS

Here, we compared, for the first time, the spatio-temporal transcriptome changes in both root and shoot of two NUE contrasting tomato genotypes, Regina Ostuni (high-NUE) and UC82 (low-NUE), in response to short-term (within 24 h) low (LN) and high (HN) NO resupply.

RESULTS

Using time-series transcriptome data (0, 8, and 24 h), we identified 395 and 482 N-responsive genes differentially expressed (DEGs) between RO and UC82 in shoot and root, respectively. Protein kinase signaling plant hormone signal transduction, and phenylpropanoid biosynthesis were the main enriched metabolic pathways in shoot and root, respectively, and were upregulated in RO compared to UC82. Interestingly, several N transporters belonging to NRT and NPF families, such as and , were found differentially expressed between RO and UC82 genotypes, which might explain the contrasting NUE performances. Transcription factors (TFs) belonging to several families, such as ERF, LOB, GLK, NFYB, ARF, Zinc-finger, and MYB, were differentially expressed between genotypes in response to LN. A complementary Weighted Gene Co-expression Network Analysis (WGCNA) allowed the identification of LN-responsive co-expression modules in RO shoot and root. The regulatory network analysis revealed candidate genes that might have key functions in short-term LN regulation. In particular, an asparagine synthetase (ASNS), a CBL-interacting serine/threonine-protein kinase 1 (), a cytokinin riboside 5'-monophosphate phosphoribohydrolase (LOG8), a glycosyltransferase (), and an ERF2 were identified in the shoot, while an LRR receptor-like serine/threonine-protein kinase () and two TFs and were identified in the root.

DISCUSSION

Our results revealed potential candidate genes that independently and/or concurrently may regulate short-term low-N response, suggesting a key role played by cytokinin and ROS balancing in early LN regulation mechanisms adopted by the N-use efficient genotype RO.

摘要

背景

了解与高氮利用效率(NUE)相关的植物氮(N)响应背后复杂的调控网络是可持续种植系统面临的主要挑战之一。硝酸盐(NO)既是一种氮源,也是一种信号分子,它能引发非常快速的转录组重编程,使植物能够适应其有效性。这些变化具有基因型和组织特异性;因此,对比不同基因型对于揭示高氮利用效率机制至关重要。

方法

在这里,我们首次比较了两种氮利用效率不同的番茄基因型,即雷吉纳·奥斯特尼(高氮利用效率)和UC82(低氮利用效率),在根和地上部对短期(24小时内)低(LN)和高(HN)NO再供应的时空转录组变化。

结果

利用时间序列转录组数据(0、8和24小时),我们分别在地上部和根中鉴定出395个和482个在雷吉纳·奥斯特尼和UC82之间差异表达(DEGs)的氮响应基因。蛋白激酶信号转导、植物激素信号转导和苯丙烷生物合成分别是地上部和根中主要富集的代谢途径,与UC82相比,在雷吉纳·奥斯特尼中上调。有趣的是,发现属于NRT和NPF家族的几个氮转运蛋白,如 和 ,在雷吉纳·奥斯特尼和UC82基因型之间差异表达,这可能解释了它们不同的氮利用效率表现。属于几个家族的转录因子(TFs),如ERF、LOB、GLK、NFYB、ARF、锌指和MYB,在基因型之间对低氮的响应中差异表达。互补的加权基因共表达网络分析(WGCNA)允许在雷吉纳·奥斯特尼地上部和根中鉴定低氮响应共表达模块。调控网络分析揭示了可能在短期低氮调控中具有关键功能的候选基因。特别是,在地上部鉴定出一种天冬酰胺合成酶(ASNS)、一种CBL相互作用的丝氨酸/苏氨酸蛋白激酶1( )、一种细胞分裂素核糖苷5'-单磷酸磷酸核糖水解酶(LOG8)、一种糖基转移酶( )和一种ERF2,而在根中鉴定出一种富含亮氨酸重复序列的受体样丝氨酸/苏氨酸蛋白激酶( )和两个转录因子 和 。

讨论

我们的结果揭示了可能独立和/或同时调节短期低氮响应的潜在候选基因,表明细胞分裂素和活性氧平衡在氮利用效率高的基因型雷吉纳·奥斯特尼采用的早期低氮调控机制中起关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验