Dlugosch Julian M, Seim Henning, Bora Achyut, Kamiyama Takuya, Lieberman Itai, May Falk, Müller-Plathe Florian, Nefedov Alexei, Prasad Saurav, Resch Sebastian, Saller Kai, Seim Christian, Speckbacher Maximilian, Voges Frank, Tornow Marc, Kirsch Peer
Molecular Electronics, Technical University of Munich, Hans-Piloty-Straße 1, 85748 Garching, Germany.
Electronics R&D, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany.
ACS Appl Mater Interfaces. 2022 Jul 13;14(27):31044-31053. doi: 10.1021/acsami.2c05264. Epub 2022 Jul 1.
We present the prototype of a ferroelectric tunnel junction (FTJ), which is based on a self-assembled monolayer (SAM) of small, functional molecules. These molecules have a structure similar to those of liquid crystals, and they are embedded between two solid-state electrodes. The SAM, which is deposited through a short sequence of simple fabrication steps, is extremely thin (3.4 ± 0.5 nm) and highly uniform. The functionality of the FTJ is ingrained in the chemical structure of the SAM components: a conformationally flexible dipole that can be reversibly reoriented in an electrical field. Thus, the SAM acts as an electrically switchable tunnel barrier. Fabricated stacks of Al/AlO/SAM/Pb/Ag with such a polar SAM show pronounced hysteretic, reversible conductance switching at voltages in the range of ±2-3 V, with a conductance ratio of the low and the high resistive states of up to 100. The switching mechanism is analyzed using a combination of quantum chemical, molecular dynamics, and tunneling resistance calculation methods. In contrast to more common, inorganic material-based FTJs, our approach using SAMs of small organic molecules allows for a high degree of functional complexity and diversity to be integrated by synthetic standard methods, while keeping the actual device fabrication process robust and simple. We expect that this technology can be further developed toward a level that would then allow its application in the field of information storage and processing, in particular for in-memory and neuromorphic computing architectures.
我们展示了一种铁电隧道结(FTJ)的原型,它基于小功能分子的自组装单分子层(SAM)。这些分子具有与液晶类似的结构,并嵌入在两个固态电极之间。通过简单的短序列制造步骤沉积的SAM极其薄(3.4±0.5纳米)且高度均匀。FTJ的功能源于SAM组件的化学结构:一种构象灵活的偶极子,可在电场中可逆地重新定向。因此,SAM充当了电可切换隧道势垒。具有这种极性SAM的Al/AlO/SAM/Pb/Ag堆叠结构在±2 - 3 V范围内的电压下表现出明显的滞后、可逆电导切换,低电阻态与高电阻态的电导比高达100。使用量子化学、分子动力学和隧道电阻计算方法相结合来分析切换机制。与更常见的基于无机材料的FTJ不同,我们使用小有机分子SAM的方法允许通过合成标准方法集成高度的功能复杂性和多样性,同时保持实际器件制造过程稳健且简单。我们预计该技术能够进一步发展到一个水平,从而使其能够应用于信息存储和处理领域,特别是用于内存和神经形态计算架构。